

# **Rancho Murieta** Community Services District

# Recycled Water Program Preliminary Design Report



June 2017

# **Recycled Water Program Preliminary Design Report**

June 2017



Prepared under the responsible charge of

Kevin Kennedy Registration No. C61206

# Kennedy/Jenks Consultants

10850 Gold Center Drive, Suite 350 Rancho Cordova, California 95670

# **Table of Contents**

| Executive Su | immary                                                  | ES-1 |
|--------------|---------------------------------------------------------|------|
| Section 1:   | Introduction                                            |      |
| 1.1: Ba      | ckground and Objectives                                 | 1    |
| 1.2: De      | velopment Projections                                   |      |
| 1.3: Pro     | ogram Benefits                                          | 5    |
| 1.4: Pre     | eliminary Design Report Organization                    | 6    |
| 1.5: Ac      | knowledgements                                          | 6    |
| Section 2:   | Basis of Design                                         | 7    |
| 2.1: Sei     | rvice Area                                              | 7    |
| 2.2: Dis     | strict Recycled Water Code and Standards                | 7    |
| 2.3: Exi     | sting and Proposed Developments                         | 9    |
| 2.3.1:       | Murieta Gardens (Phase 1)                               |      |
| 2.3.2:       | The Retreats (Phase 1)                                  |      |
| 2.3.3:       | Village A (Buildout)                                    |      |
| 2.3.4:       | Village B (Buildout)                                    |      |
| 2.3.5:       | Village C (Buildout)                                    |      |
| 2.3.6:       | Village D (Buildout)                                    |      |
| 2.3.7:       | Village E (Buildout)                                    |      |
| 2.3.8:       | Village F (Buildout)                                    |      |
| 2.3.9:       | Village G (Buildout)                                    |      |
| 2.3.10:      | Village H (Buildout)                                    |      |
| 2.3.11:      | Apartments (Buildout)                                   |      |
| 2.3.12:      | Residences of Murieta Hills (Buildout)                  |      |
| 2.3.13:      | Lakeview (Buildout)                                     |      |
| 2.3.14:      | Riverview (Buildout)                                    |      |
| 2.3.15:      | Industrial/Commercial/Residential (Buildout)            | 14   |
| 2.4: Wa      | stewater Production and Recycled Water Demand Estimates | 14   |
| 2.5: De      | sign Criteria                                           |      |
| 2.5.1:       | Historic Golf Course Irrigation Demands                 |      |
| 2.5.2:       | Review of Historic Unit Flows and Golf Course Demands   |      |
| 2.6: Wa      | astewater Treatment Facility and Reclamation Plant      |      |

| 2.7: Re    | cycled Water Use Areas and Conveyance Systems                   |    |
|------------|-----------------------------------------------------------------|----|
| 2.7.1:     | North and South Golf Courses                                    | 23 |
| 2.7.2:     | Van Vleck Ranch Pipelines                                       | 25 |
| 2.7.3:     | Existing Stonehouse 12-inch Sewer Forcemain                     |    |
| 2.8: Co    | nveyance System Requirements                                    | 26 |
| 2.8.1:     | Recycled Water Supplies and Demands                             | 26 |
| 2.8.2:     | Pressure Limitations of Existing Pipelines                      | 27 |
| 2.8.3:     | Recycled Water Tank Locations and Elevations                    | 27 |
| 2.8.4:     | System Controls                                                 | 27 |
| 2.8.5:     | Proposed Operating Strategy                                     | 29 |
| 2.9: Re    | gulatory Compliance                                             |    |
| 2.9.1:     | Environmental Compliance                                        |    |
| 2.9.2:     | Regulatory Requirements                                         |    |
| Section 3: | Recommended Improvements                                        | 35 |
| 3.1: Re    | commended Phase 1 WWRP Improvements                             |    |
| 3.1.1:     | Control System for Recycled Water Conveyance and Storage System |    |
| 3.1.2:     | Equalization Basin Potable Water Air Gap Connection             |    |
| 3.1.3:     | Rehabilitate Recycled Water Pumping Station                     | 41 |
| 3.1.4:     | District Headquarters Connection Irrigation System              |    |
| 3.2: Re    | commended Phase 1 Conveyance System Improvements                |    |
| 3.2.1:     | Northwest Recycled Water Transmission Main                      |    |
| 3.2.2:     | Lookout Hill Water Storage Tank                                 | 46 |
| 3.2.3:     | Escuela Park Conversion                                         | 46 |
| 3.2.4:     | Stonehouse Park Conversion                                      | 46 |
| 3.2.5:     | Main Northgate Conversion                                       | 47 |
| 3.2.6:     | Murieta Gardens                                                 | 47 |
| 3.2.7:     | The Retreats                                                    | 47 |
| 3.3: Re    | commended Buildout Improvements                                 |    |
| 3.3.1:     | Disinfection Facilities Upgrade                                 |    |
| 3.3.2:     | Existing North Golf Course Conveyance System Rehabilitation     |    |
| 3.3.3:     | Bass Lake Recycled Water Storage Tanks:                         |    |
| 3.3.4:     | Seasonal Storage Reservoir                                      |    |
| 3.3.5:     | Van Vleck Sprayfield No. 4                                      |    |

| 3.3.6     | 6: Villages A, B, and C Developments   | 50 |
|-----------|----------------------------------------|----|
| Section 4 | Project Implementation                 | 51 |
| 4.1:      | Construction Sequencing                | 51 |
| 4.2:      | Project Implementation Schedule        | 51 |
| 4.3:      | Construction Documents                 | 53 |
| 4.4:      | Estimate of Probable Construction Cost | 57 |

#### List of Tables

#### List of Figures

| Figure ES-1. Proposed Phase 1 Implementation Schedule                                         | ES-3 |
|-----------------------------------------------------------------------------------------------|------|
| Figure 1. Proposed Phase 1 and Buildout Developments                                          | 3    |
| Figure 2. Phase 1 and Buildout Development and ADWF Projections                               | 5    |
| Figure 3. District Service Area Boundary                                                      | 8    |
| Figure 4. Existing and Planned Phase 1 Developments                                           | 10   |
| Figure 5. Existing and Planned Phase 1 and Buildout Developments                              | 11   |
| Figure 6. Recycled Water Production and Demand Estimates                                      | 17   |
| Figure 7. Historic Annual Golf Course Irrigation Demands (Raw and Recycled Water)             | 17   |
| Figure 8. Historic Monthly Golf Course Recycled Water Irrigation Demands (AF per Month)       | 18   |
| Figure 9. Historic Monthly Golf Course Recycled Water Irrigation Demands (Percent of Total An | nual |
| Demand)                                                                                       | 18   |
| Figure 10. Existing WWTF and WWRP                                                             | 22   |
| Figure 11. Existing Recycled Water Conveyance Systems and Use Areas                           | 24   |

| Figure 12. | Proposed Phase 1 WWRP Improvements                                             | 38 |
|------------|--------------------------------------------------------------------------------|----|
| Figure 13. | Proposed Potable Water Air Gap and Chlorine Contact Improvements               | 39 |
| Figure 14. | Irrigation System Conversions to Recycled Water                                | 43 |
| Figure 15. | Recommended Phase 1 and Buildout Recycled Water Conveyance System Improvements | 44 |
| Figure 16. | Lookout Hill Storage Tank                                                      | 45 |
| Figure 17. | Proposed Phase 1 Implementation Schedule                                       | 52 |
|            |                                                                                |    |

### <u>Appendix</u>

\_\_\_\_\_

# List of Abbreviations and Acronyms

| ac       | Acres                                                                                                                  |
|----------|------------------------------------------------------------------------------------------------------------------------|
| ACP      | asbestos cement pipe                                                                                                   |
| ADWF     | average dry weather flow                                                                                               |
| AFY      | acre-feet per year                                                                                                     |
| ССВ      | chlorine contact basin                                                                                                 |
| ССР      | chlorine contact pipe                                                                                                  |
| DAF      | dissolved air flotation                                                                                                |
| DIP      | ductile iron pipe                                                                                                      |
| District | Rancho Murieta Community Services District                                                                             |
| ENR      | Engineering News Record                                                                                                |
| ft       | Feet                                                                                                                   |
| gpm      | gallons per minute                                                                                                     |
| HGL      | Hydraulic Grade Line                                                                                                   |
| I/I      | infiltration and inflow                                                                                                |
| In       | Inch                                                                                                                   |
| IPR      | Indirect Potable Recharge                                                                                              |
| IS/MND   | Initial Study/Mitigated Negative Declaration Rancho Murieta Recycled Water System Expansion Project (AECOM, June 2014) |
| LF       | linear feet                                                                                                            |
| MCCs     | motor control centers                                                                                                  |
| MGD      | million gallons per day                                                                                                |
| mm       | Millimeter                                                                                                             |
| NOA      | Naturally Occurring Asbestos                                                                                           |
| NPDES    | National Pollution Discharge Elimination System                                                                        |
| PDR      | Preliminary Design Report (this document)                                                                              |

- PLC Programmable Logic Controller
- PRV pressure reducing valve
- psi pounds per square inch
- RMA Rancho Murieta Association
- RMCC Rancho Murieta Country Club
- RMPI Rancho Murieta Properties, Inc.
- RVs recreational vehicles
- SCADA Supervisory Control and Data Acquisition
- TDH Total dynamic head
- WDR Waste Discharge Requirements
- WWRP Wastewater Reclamation Plant
- WWTF Wastewater Treatment Facility

#### **Executive Summary**

The purpose of this Preliminary Design Report (PDR) is to describe Phase 1 and Buildout of Rancho Murieta Community Services District's (District's) Recycled Water Program with respect to existing and future conditions; development projections, phasing and recycled water use areas; recommended improvements and descriptions and implementation plan. This PDR will also serve as the basis for subsequent environmental, regulatory permitting activities and detailed design and construction efforts associated with the recommended Phase 1 Recycled Water Improvements Project. In addition, this PDR also describes the approximate timeline for the improvements required for Buildout of the District's Recycled Water Program. Refinements and adjustment to the recommended Buildout improvements are expected to be conducted later as the implementation timeline draws closer and/or if development plans change.

Existing recycled water use areas can accommodate the equivalent of roughly 3,265 residential homes based on the 0.5 MGD ADWF capacity described in the WDR.<sup>1</sup> Review and comparison of the 3,265 equivalent residential homes to the development projections indicate the need to expand recycled water use beyond the North and South Golf Courses in the near future to accommodate growth. The projected average dry weather flow (ADWF) at Buildout is 0.79 MGD. The ADWF is currently about 0.34 MGD.

Development projections obtained from the District's Water Supply Assessment Technical Memorandum (Maddaus Water Management, Inc., January 18, 2016) and updated information obtained from developers indicate that the District's current rated ADWF of 0.5 MGD is projected to be exceeded in 2019. However this development timeline is consider both aggressive and optimistic compared to historic growth patterns. Actual development rates will likely be lower and the development timeline extended beyond the year 2035.

A series of improvements is recommended to provide the capacity needed to accommodate growth. Table ES-1 presents a summary of the recommended improvements and estimated costs.

Figure ES-1 presents a summary of recommended implementation activities, timelines and deadlines for Phase 1 improvements. Buildout improvements are anticipated to require about 3 years to complete. Flows are projected to approach the rated ADWF capacity of the existing seasonal storage reservoirs around 2023. Therefore, the District should initiate the expansion of the seasonal storage reservoirs no later than January 2020.

<sup>&</sup>lt;sup>1</sup> 0.5 MGD flow includes allocations for infill (0.05 MGD), Murieta Gardens (residential and commercial) and The Retreats (residential) for a total of 3,265 total equivalent residential units.

| No.                                  | Improvement                                             | Estimated Cost (\$) <sup>a</sup> |  |  |
|--------------------------------------|---------------------------------------------------------|----------------------------------|--|--|
|                                      | Phase 1 Recycled Water Improveme                        | ents                             |  |  |
| 1                                    | Recycled Water SCADA Control System                     | 250,000                          |  |  |
| 2                                    | Equalization Basin Potable Water Air Gap                | 76,000                           |  |  |
| 3                                    | Recycled Water Pumping Station                          | 1,165,000                        |  |  |
| 4                                    | District Headquarters Conversion                        | 20,000                           |  |  |
| 5                                    | Northwest Recycled Water Transmission Main              | 1,006,000                        |  |  |
| 6                                    | Lookout Hill Booster Pumping Station                    | 612,000                          |  |  |
| 7                                    | Escuela Park Conversion                                 | 16,000                           |  |  |
| 8                                    | Stonehouse Park Conversion                              | 36,000                           |  |  |
| 9                                    | Lookout Hill Recycled Water Storage Tank                | 545,000                          |  |  |
| 10                                   | Main Northgate Conversion                               | 18,000                           |  |  |
| 11                                   | Commercial Loop Conversion                              | па                               |  |  |
|                                      | Phase 1 Subtotal (Estimated Construction Cost)          | 3,740,000                        |  |  |
| 12                                   | Soft Costs – 32.5% (Admin., Reg., Eng., Construct Man.) | 1,215,500                        |  |  |
|                                      | Phase 1 Total (Project Cost)                            | 4,960,000                        |  |  |
| Buildout Recycled Water Improvements |                                                         |                                  |  |  |
| 13                                   | SCADA Upgrades                                          | 82,000                           |  |  |
| 14                                   | Disinfection Facilities Upgrade                         | 665,000                          |  |  |
| 15                                   | North Golf Course Conveyance System                     | 1,620,000                        |  |  |
| 16                                   | Bass Lake Tank                                          | 1,216,000                        |  |  |
| 17                                   | Bass Lake Booster Pumping Station                       | 625,000                          |  |  |
| 18                                   | Seasonal Storage Reservoir Expansion                    | 3,407,000                        |  |  |
| 19                                   | Van Vleck Sprayfield 4                                  | 270,000                          |  |  |
| 20                                   | DAF Pumping Replacement                                 | 100,000                          |  |  |
|                                      | Buildout Subtotal (Estimated Construction Cost)         | 7,990,000                        |  |  |
| 21                                   | Soft Costs – 32.5% (Admin., Reg., Eng., Construct Man.) | 2,600,000                        |  |  |
|                                      | Buildout Total (Project Cost)                           | 10,590,000                       |  |  |
|                                      | Phase 1 and Buildout Recycled Water Imp                 | rovements                        |  |  |
|                                      | Grand Total (Phase 1 and Buildout)                      | 15,600,000                       |  |  |
|                                      | Estimated Number of New Equivalent Residential Units    | 2,440                            |  |  |
|                                      | Estimated Cost per Connection (\$/ERU)                  | \$6,395                          |  |  |

Table ES-1. Recommended Recycled Water Improvements and Estimated Costs

<sup>a</sup> Estimated costs based upon Engineering News Record (ENR) 20 City Average Construction Cost Index (CCI) at 10,385 (August 2016)

na Data not available to make this determination



Figure ES-1. Proposed Phase 1 Implementation Schedule

#### THIS PAGE INTENTIONALLY BLANK

ES-4

# Section 1: Introduction

This Preliminary Design Report (PDR) describes Phase 1 and Buildout of Rancho Murieta Community Services District's (District's) Recycled Water Program with respect to existing and future conditions; development projections, phasing and recycled water use areas; recommended improvements and descriptions (including costs and timeline) and implementation plan.

This section presents and describes the Recycled Water Program background, objectives, benefits, PDR organization, development projections, and acknowledgements.

#### 1.1: Background and Objectives

The District's existing recycled water use areas (i.e., the North and South Golf Courses) can accommodate roughly 3,265 equivalent residential units<sup>2</sup> based on the 0.5 million gallons per day (MGD) average dry weather flow (ADWF) capacity described in the District's Waste Discharge Requirements (WDR). Review and comparison of this 3,265 equivalent residential units limitation to the current development projections indicate the need to expand recycled water use to accommodate projected development within Rancho Murieta. Recycled water use provides disposal and beneficial reuse of the treated wastewater effluent required to accommodate future planned development.

The District's Board of Directors adopted the Recycled Water Standards (October, 2013) in response to the adoption of District Policy No. 2011-07, Authorized and Mandated Use of Recycled Water (Recycled Water Policy) and the adoption of District Code, Chapter 17, Recycled Water Code (Recycled Water Code). The Recycled Water Policy requires the use of recycled water wherever economically and physically feasible as determined by the Board and identified, in general, that the lands subject to mandatory recycled water use are the undeveloped parcels within the existing District service area. Specific future developments areas were further designated<sup>3</sup> within the existing District service area and the District's off-site disposal area on the neighboring Van Vleck Ranch. Expanded recycled water use at specific future sites is expected to provide the District with the increased disposal and beneficial reuse of treated wastewater effluent required to serve future developments, accommodate growth within Rancho Murieta, provide an offset to potable water demands, and comply with the WDR.

The objectives of this PDR are to describe Phase 1 and Buildout needs/requirements of the District's Recycled Water Program with respect to existing and future conditions; development projections, phasing and recycled water use areas; recommended improvements and descriptions (including costs and timeline) and implementation plan. Table 1 presents a listing of the proposed Phase 1 and Buildout future developments and recycled water use areas. Figure 1 shows existing developments along with proposed developments for Phase 1 and Buildout.

This PDR will serve as the basis for subsequent environmental, regulatory permitting activities, and detailed design and construction efforts associated with the recommended Phase 1 Recycled Water Improvements Project described in Section 3 of this PDR. In addition, this PDR also describes the approximate timeline for the improvements required for Buildout of the District's Recycled Water Program. Refinements and adjustment to the recommended Buildout improvements are expected

<sup>&</sup>lt;sup>2</sup> 0.5 MGD flow includes allocations for infill (0.05 MGD), Murieta Gardens (residential and commercial) and The Retreats (residential) for a total of 3,265 total equivalent residential units.

<sup>&</sup>lt;sup>3</sup> Within the District's submittal of the Report of Waste Discharge and subsequent adoption of the Master Reclamation Permit (December 20, 2013).

to be conducted later as the implementation timeline draws closer and/or if development plans change.

| Phase    | Proposed Developments             | Proposed Recycled Water Use Areas                    |
|----------|-----------------------------------|------------------------------------------------------|
| Phase 1  | Murieta Gardens                   | Murieta Gardensª [U, R]                              |
|          | Retreats (North, West and East)   | Retreats <sup>a</sup> (North, West and East) [U]     |
|          |                                   | Stonehouse Park <sup>b</sup> (existing) [U]          |
|          |                                   | Escuela Park <sup>b</sup> (existing) [U]             |
|          |                                   | Main Northgate <sup>b</sup> (existing) [U]           |
|          |                                   | District Office <sup>b</sup> (existing) [U]          |
|          |                                   | Commercial Loop <sup>c</sup>                         |
| Buildout | Residences of Murieta Hills       | Residences of Murieta Hills <sup>a</sup> [U,R]       |
|          | Apartments                        | Apartments <sup>a</sup> [U]                          |
|          | Industrial/Commercial/Residential | Industrial/Commercial/Residential <sup>a</sup> [U,R] |
|          | Village A                         | Village A <sup>a</sup> [R]                           |
|          | Village B                         | Village B <sup>a</sup> [R]                           |
|          | Village C                         | Village C <sup>a</sup> [R]                           |
|          | Village D                         |                                                      |
|          | Village E                         |                                                      |
|          | Village F                         |                                                      |
|          | Village G                         |                                                      |
|          | Village H                         |                                                      |
|          | Riverview                         |                                                      |
|          | Lakeview                          |                                                      |

 Table 1. Proposed Developments and Recycled Water Use Areas

<sup>a</sup> As requested by the District Board at the December 16, 2015 Board meeting.

<sup>b</sup> As requested by District staff for October 10, 2016 Improvements Committee presentation *and if deemed to be cost effective by the District Board.* 

<sup>c</sup> Recycled water service to this existing urban irrigation areas appears to be cost effective. However, discussions with the owner are recommended prior to moving forward.

U = urban recycled water irrigation, see definition below

R = residential recycled water irrigation, see definition below

Phase 1 and Buildout of the District's Recycled Water Program consists of a series of improvements to the District's existing Wastewater Reclamation Plant (WWRP) and North Golf Course recycled water conveyance system<sup>4</sup> to serve future residential developments, existing parks, common areas and other landscaping consistent with the District's adopted Recycled Water Code, Recycled Water Standards and Waste Discharge Requirements. Ultimately, the District's expanded Recycled Water Program will provide the disposal capacity needed to accommodate future developments and offset (reduce) potable water demands by approximately 400 acre-feet per year (AFY).

For the purposes of this report, future reuse areas have been categorized in Table 1 according to the following definitions:

• Residential Recycled Water Irrigation [R]: Future recycled water front and backyard irrigation of future residential development landscaping consistent with the District's adopted Recycled Water Code, Recycled Water Standards and Waste Discharge Requirements. As indicated in Table 1, there are six developments that have use areas which fall within this category.

<sup>&</sup>lt;sup>4</sup> Originally owned by RMPI, now Rancho Murieta Properties, LLC., and operated by Rancho Murieta Country Club (RMCC) as described in Section 2.



Figure 1. Proposed Phase 1 and Buildout Developments

• Urban Recycled Water Irrigation [U]: Future recycled water irrigation of existing parks, common areas and other landscaping consistent with the District's adopted Recycled Water Code, Recycled Water Standards and Waste Discharge Requirements. As indicated in Table 1, there are nine developments that have use areas which fall within this category.

Phase 1 of the District's Recycled Water Program could be initiated as early as mid-2019 as described later in the last section of the PDR. According to development projections provided by developers/owners of the remaining undeveloped parcels within the District's service area, Buildout is projected to occur in the 2035 timeline as described later in Section 2.3.

The following documents, reports, studies, etc., (presented in sequence) were used in the development of this PDR:

- Agreement for Availability and Use of Reclaimed Wastewater, May 17, 1988
- Amendment to Agreement for Availability and Use of Reclaimed Wastewater, May 4, 1994
- Rancho Murieta North Infrastructure Master Plan (MacKay & Somps, May 2003)
- Recycled Water Code, District Code Chapter 17 (Rancho Murieta Community Services District, January 8, 2012)
- Title XVI Recycled Water Feasibility Study (AECOM, June 2014)
- Initial Study/Mitigated Negative Declaration Rancho Murieta Recycled Water System Expansion Project (AECOM, June 2014)
- California Regional Water Quality Control Board, Central Valley Region Order No. R5-2014-149 Wastewater District Requirements and Master Recycling Permit (WDR)
- USBR Funding Application (AECOM, January 13, 2016)
- Water Supply Assessment Technical Memorandum (Maddaus Water Management, Inc., January 18, 2016)
- Retreats West Capacity Certification Letter (Kennedy/Jenks Consultants, May 4, 2016)
- Draft Sewer Study for the Retreats North & East (Baker-Williams Engineering Group, May 6, 2016)
- Draft Sewer Study for Murieta Gardens I & II (Baker-Williams Engineering Group, May 15, 2016)
- Preliminary Sewer Study for Rancho Murieta North (Baker-Williams Engineering Group, May 31, 2016)
- Draft Recycled Water Modeling Study (AECOM, June 2016)

#### **1.2:** Development Projections

Buildout is projected to occur around 2035 based on the latest development projections and result in roughly 4,817 equivalent residential units<sup>5</sup> within the District's service area. Figure 2 graphically illustrates a summary of development and associated ADWF projections. The level of development reflects an increase of roughly 85 percent above the current number of equivalent residential units.

Review and analyses of the development projections indicate the following distinct periods of different projected rates of growth:

- 2016 through 2020: Approximately 1,355 new equivalent residential units (11%/yr. growth rate)
- 2020 through 2030: Approximately 490 new residential homes (1.2%/yr. growth rate)

<sup>&</sup>lt;sup>5</sup> Value and values shown in Figure 2 do not include future 227 Murieta Gardens commercial and/or industrial connections and are based on 2,604 existing equivalent residential units.

- 2030 through 2035: Approximately 370 new residential homes (1.7%/yr. growth rate)
- 2035 through 2045: At Buildout, no new homes (0%/yr. growth rate thereafter)



Figure 2. Phase 1 and Buildout Development and ADWF Projections

Existing recycled water use areas (i.e., North and South Golf Courses) can accommodate roughly 3,265 equivalent residential units based on the 0.5 MGD ADWF capacity described in the WDR<sup>6</sup>. Review and comparison of the 3,265 equivalent residential units to the development projections shown in Figure 2 indicate the need to expand recycled water use beyond the North and South Golf Courses in the future to support the level of development currently projected for Rancho Murieta.

#### **1.3:** Program Benefits

The District's Recycled Water Program is aligned with the actions needed to (1) provide additional water to help offset California's dwindling water supplies, (2) aggressively promote and demonstrate water programs that stretch California's available potable water supplies, and (3) contribute to the long-term recovery of the Canal Basin and Delta and Cosumnes River ecosystems. The District's Recycled Water Program will:

- Leverage and apply the District's Recycled Water Program Codes, Standards, requirements, etc.
- Offset potable water demands, conserve surface water supplies and reduce Cosumnes River diversions (approximately 400 AFY).
- Provide a beneficial, sustainable and long-term means for treated effluent disposal.
- Help the District meet their 20x2020 Water Conservation Goals.
- Increase water supply reliability and reduce drought deficits.

<sup>6</sup> 0.5 MGD flow includes allocations for infill (0.05 MGD), Murieta Gardens (residential and commercial) and The Retreats (residential) for a total of 3,265 total equivalent residential units.

- Maximize use of existing infrastructure.
- Provide opportunities to serve other potential users along the recycled water transmission pipeline alignments.
- Reduce the potential need to upgrade the District's existing Wastewater Treatment Facility (WWTF) and WWRP to more modern and conventional facilities that may have been otherwise required for surface water discharge via request and approval of a National Discharge Elimination System (NPDES) permit or Indirect Potable Reuse (IPR).

#### 1.4: Preliminary Design Report Organization

This PDR has been organized as follows:

- Executive Summary
- Section 1. Introduction (this section)
- Section 2. Basis of Design
- Section 3. Recommended Improvements
- Section 4. Project Implementation

#### **1.5:** Acknowledgements

We appreciate and would like to thank the Rancho Murieta Community Services District for providing the opportunity to develop this PDR and work on their Recycled Water Program. We appreciate and acknowledge the efforts of the District staff, most notably Darlene Thiel, General Manager and Paul Siebensohn, Director of Field Operations, along with the Board of Directors. Without their input and support, this PDR could not have been completed.

#### Section 2: Basis of Design

This section presents the basis of design, assumptions and a summary of the system requirements recommended for Phase 1 and Buildout of the District's Recycled Water Program. Development projections, wastewater production and recycled water demand estimates, hydraulic modeling and other calculations used to establish design criteria can be found in the Appendix.

#### 2.1: Service Area

Rancho Murieta is located approximately 20 miles east of Sacramento on State Highway 16. The area served by the District is illustrated in Figure 3 and encompasses approximately 3,500 acres. Land uses within the District service area include approximately 2,000 acres for single family residences, townhouses, apartments, duplexes and mobile homes. In January 2016, when the District's Water Supply Assessment was adopted by the Board, the District served 2,604 metered connections comprised of 2,502 residential, 97 commercial and 5 park connections.<sup>7</sup> Local parks are currently being irrigated with potable water. According to Sacramento County's approved Planned Unit Development Plan at Buildout, the development of the District's service area potentially represents roughly 5,189 residential units. However as described in the previous section, recent development plans reflect a lower number of connections at Buildout than Sacramento County's approved Planned Unit Development Planned Unit Development Planned Unit Development Planned Unit Development Planned Planned Unit Planned Plann

#### 2.2: District Recycled Water Code and Standards

With respect to wastewater collections treatment and disposal, the District falls within the jurisdiction of the Central Valley Regional Water Quality Control Board (Regional Board), whose mission is to preserve, enhance, and restore the quality of California's water resources and to ensure their proper allocation and efficient use for the benefit of present and future generations. A specific goal of the Regional Board is to promote and expand the beneficial use of recycled water. In an effort to support this goal, where applicable, the District has chosen to serve recycled water to future customers, where deemed to be cost effective and to protect, preserve, and conserve ground and surface water resources within the District's service area.

The District's Board of Directors adopted the Recycled Water Standards (October, 2013) in response to the adoption of District Policy No. 2011-07 Authorized and Mandated Use of Recycled Water (Recycled Water Policy) and the adoption of District Code, Chapter 17, Recycled Water Code (Recycled Water Code). The Recycled Water Policy requires the use of recycled water wherever economically and physically feasible as determined by the Board and identified, in general, that the lands subject to mandatory recycled water use are the undeveloped parcels within the existing District service area. Specific future developments areas were further designated<sup>8</sup> within the existing District service area and the District's off-site disposal area on the neighboring Van Vleck Ranch. Expanded recycled water use at specific future sites is expected to provide the District with the increased disposal and beneficial reuse of treated wastewater effluent required to serve future developments, accommodate growth within Rancho Murieta, provide an offset to potable water demands, and comply with the WDR.

The District's Recycled Water Standards were developed to establish procedures and minimum standards, specifications and limitations to ensure the health, safety, and general welfare of the citizens of Rancho Murieta when installing infrastructure for, and the use of, recycled water, consistent with the laws and regulations of the State of California, as well as to ensure uniformity in

<sup>&</sup>lt;sup>7</sup> Since January 2016, there has been an increase of 32 residential units; equivalent to roughly a 0.12% per year growth rate.

<sup>&</sup>lt;sup>8</sup> With the District's submittal of the Report of Waste Discharge and subsequent adoption of the Master Reclamation Permit (December 20, 2013).



Figure 3. District Service Area Boundary

infrastructure design, format, methodology, construction materials, and quality of work products of the facilities associated with the expanded recycled water system. The Recycled Water Standards are intended to assist recycled water use applicants, authorized contractors, customers, and design consultants with the planning, design, repair, and construction of the expanded recycled water system and were intended to be consistent and ensure compliance with the District's Recycled Water Code and other governing policies, instructions, and regulations related to the use of recycled water. Aspects of the District's Recycled Water Standards applicable to the expanded recycled water system include the general guidelines (e.g., general requirements, system responsibilities, user liability and responsibility, recycled water infrastructure and service, etc.), design and construction standards<sup>9</sup> and standard details.

#### 2.3: Existing and Proposed Developments

Existing and future proposed Phase 1 and Buildout developments are shown in Figure 4 and Figure 5, respectively, and their assumed timelines are provided below in Table 2. The following sections describe proposed future developments. Estimated wastewater production and recycled water demand estimates were either obtained from the latest development-specific sewer studies or the Title XVI Recycled Water Feasibility Study.

| Development and Phase <sup>1</sup>       |          | Percent of Future Homes Occupied (%) <sup>1</sup> |      |             |      |      |      |  |
|------------------------------------------|----------|---------------------------------------------------|------|-------------|------|------|------|--|
| Development and Phase                    | 2018     | 2020                                              | 2025 | 2030        | 2035 | 2040 | 2045 |  |
| Murieta Gardens (305)                    | Phase 1  | 100                                               |      |             |      |      |      |  |
| The Retreats (88)                        | Phase 1  | 100                                               |      |             |      |      |      |  |
| Village A (167)                          | Buildout |                                                   | 70   | 15          | 7    | 8    |      |  |
| Village B (167)                          | Buildout |                                                   | 10   | 30          | 30   | 30   |      |  |
| Village C (130)                          | Buildout |                                                   | 10   | 40          | 40   | 10   |      |  |
| Village D (42)                           | Buildout |                                                   |      | 25          | 25   | 50   |      |  |
| Village E (43)                           | Buildout |                                                   |      |             | 20   | 80   |      |  |
| Village F (95)                           | Buildout |                                                   |      | 2           | 38   | 60   |      |  |
| Village G (53)                           | Buildout |                                                   |      |             | 10   | 90   |      |  |
| Village H (122)                          | Buildout |                                                   |      | 10          | 25   | 65   |      |  |
| Apartments (170)                         | Buildout |                                                   | 70   | 15          | 7    | 8    |      |  |
| Residences of Murieta Hills (198)        | Buildout |                                                   | 100  |             |      |      |      |  |
| Lakeview (99)                            | Buildout |                                                   | 100  |             |      |      |      |  |
| Riverview (140)                          | Buildout |                                                   | 100  |             |      |      |      |  |
| Industrial/Commercial/ Residential (160) | Buildout |                                                   | 15   | 30          | 30   | 25   |      |  |
| Development                              |          | s to be served recycled water                     |      |             |      |      |      |  |
| Developments not to be serve             |          |                                                   |      | ycled water |      |      |      |  |

 Table 2. Summary of Future Development Timelines<sup>10</sup>

<sup>1</sup>Values shown are percentages and represent the percent of total number of equivalent residential units estimated to be constructed and/or occupied by the referred date. Values shown in parentheses () represent the number of equivalent residential units to be added.

<sup>&</sup>lt;sup>9</sup> Where applicable given the expectation of reusing or re-purposing existing pipelines.

<sup>&</sup>lt;sup>10</sup> Village A through H, Apartments and Industrial/Commercial/Residential timelines obtained from the District's Water Supply Assessment. Lakeview, Riverview, and Residences of Murieta Hills development timelines based on discussions with Les Hock of Hock Construction Management Inc. Timelines for Murieta Gardens and The Retreats obtained from Murieta Gardens I & II Sewer Study and The Retreats North & East and The Retreats West Sewer Studies.



Figure 4. Existing and Planned Phase 1 Developments



2.3.1: Murieta Gardens (Phase 1)

As described in the May 15, 2016 Sewer Study, Murieta Gardens is a Phase 1 development consisting of mixed use commercial development (Murieta Gardens I) and a residential development (Murieta Gardens II) located southeast of the intersection of Highway 16 (Jackson

Highway) and Murieta Drive. The Murieta Gardens I phase will consist of roughly 36.5 AC of commercial development that will include a hotel, an extended stay, commercial shops/pads, potential restaurants, one acre park, a self-storage facility and a 5.4 AC detention basin area. The Murieta Gardens II phase will consist of 78 single family residential homes on roughly 16.4 acres. Estimated wastewater production and recycled water demand for Murieta Gardens are 71.9 and 30.5 AFY, respectively. These values as well as the others described in this section were obtained from the latest developer submitted sewer studies.

The hotel is currently under construction and is expected to be completed Spring 2017. Construction of the other development phases and components are scheduled to be completed by Fall 2018.

#### 2.3.2: The Retreats (Phase 1)

As described in the May 3 and 6, 2016 Sewer Studies, The Retreats is a Phase 1 development consisting of the following three elements located near the intersection of De La Cruz Drive and Murieta Parkway:

- Retreats West: 22 single family residential homes
- Retreats North: 52 single family residential homes
- Retreats East: 10 single family residential homes

Total estimated wastewater production and recycled water demand for The Retreats (North, West, and South) are 19.8 and 15.1 AFY, respectively.

The Retreats West is currently under construction and is expected to be served with potable water for irrigation purposes on an interim basis until recycled water is available. Construction of the Retreats North and East are scheduled to be completed by Fall 2018.

#### 2.3.3: Village A (Buildout)

Development densities for Villages A through H are based on the Preliminary Sewer Study for Rancho Murieta North. These densities are undergoing further evaluation and revision that will more likely result in lower densities.

Village A will encompass approximately 94.5 acres of which 59.0 acres are proposed for the development of 167 residential homes. This Buildout development is scheduled to receive recycled water. Estimated wastewater production and recycled water demand for Village A are 39.3 and 61.4 AFY, respectively.

#### 2.3.4: Village B (Buildout)

Village B will encompass approximately 81.7 acres of which 63.8 acres are proposed for the development of 167 residential homes. This Buildout development is scheduled to receive recycled water. Estimated wastewater production and recycled water demand for Village B are 39.3 and 64.6 AFY, respectively.

#### 2.3.5: Village C (Buildout)

Village C will encompass approximately 63.3 acres of which 40.8 acres are proposed for the development of 130 residential homes. This Buildout development is scheduled to receive recycled water. Estimated wastewater production and recycled water demand for Village C are 30.6 and 49.6 AFY, respectively.

# 2.3.6: Village D (Buildout)

Village D will encompass approximately 28.5 acres of which 24.7 acres are proposed for the development of 42 residential homes. This Buildout development is NOT currently scheduled to receive recycled water. Estimated wastewater production for Village D is 9.9 AFY.

# 2.3.7: Village E (Buildout)

Village E will encompass approximately 79.0 acres of which 6.3 acres are proposed for the development of 43 residential homes. This Buildout development is NOT currently scheduled to receive recycled water. Estimated wastewater production for Village E is 10.1 AFY.

# 2.3.8: Village F (Buildout)

Village F will encompass approximately 77.1 acres of which 36.8 acres are proposed for the development of 95 residential homes. This Buildout development is NOT currently scheduled to receive recycled water. Estimated wastewater production for Village F is 15.3 AFY.

# 2.3.9: Village G (Buildout)

Village G will encompass approximately 114.6 acres of which 28.7 acres are proposed for the development of 53 residential homes. This Buildout development is NOT currently scheduled to receive recycled water. Estimated wastewater production for Village G is 12.5 AFY.

### 2.3.10: Village H (Buildout)

Village H will encompass approximately 67.6 acres of which 49.5 acres are proposed for the development of 122 residential homes. This Buildout development is NOT currently scheduled to receive recycled water. Estimated wastewater production for Village H is 28.7 AFY.

#### 2.3.11: Apartments (Buildout)

The Apartments will be located just east of the intersection of Highway 16 and Murieta Parkway. The Apartments encompass approximately 17.8 acres proposed for the development of 170 residential units. This Buildout development is scheduled to receive recycled water. Estimated wastewater production and recycled water demand for the Apartments are 23.3 and 23.8 AFY, respectively.

#### 2.3.12: Residences of Murieta Hills (Buildout)

The Residences at Murieta Hills will be located in the northwest corner of the service area. This development will encompass approximately 146.1 acres of which 74.4 acres are proposed for the development of 198 residential homes. This Buildout development is scheduled to receive recycled water. Estimated wastewater production and recycled water demand for Residences of Murieta Hills are 46.6 and 73.8 AFY, respectively.

#### 2.3.13: Lakeview (Buildout)

The Lakeview subdivision will be located in Rancho Murieta South, just west of Lakes 10 and 11. It encompasses approximately 41.6 acres proposed for development of 99 residential homes. This Buildout development is NOT currently scheduled to receive recycled water. Estimated wastewater production for Lakeview is 21.4 AFY.

#### 2.3.14: Riverview (Buildout)

The Riverview subdivision will be located in Rancho Murieta South, just east of Lakes 10 and 11. It encompasses approximately 57.4 acres proposed for development of 140 residential homes. This Buildout development is NOT currently scheduled to receive recycled water. Estimated wastewater production for Lakeview is 32.9 AFY.

#### 2.3.15: Industrial/Commercial/Residential (Buildout)

This development consists of a 40 acre undeveloped commercial site located on the south side of Highway 16 just west of the District's WWTP. The proposed specific uses for this site have not been determined by the developer at this time. However, according to the Preliminary Sewer Study for Rancho Murieta North, the sewer demand for the 40 acre development is anticipated to be equivalent to approximately 160 residential units, which is the value used for the development of this PDR.

#### 2.4: Wastewater Production and Recycled Water Demand Estimates

Recycled water is produced through treatment of the community's wastewater at the District's WWTF and WWRP. Existing recycled water use within the community is currently limited to irrigation of the North and South Golf Courses and during above average levels of annual precipitation, the Van Vleck Ranch Sprayfield. Historical raw and recycled water deliveries for the North and South Golf Courses and Van Vleck Ranch Sprayfield are summarized in Table 3 and Table 4. As indicated, current and future golf course recycled water deliveries for a typical year are estimated to be about 550 AFY as described in the District's WDR.

| Golf   | Historic Golf    | Recycled         | Max Month /  | Maximum Irrigation Rate |                 | Max Month / Maximum Irrigation | igation Rate |
|--------|------------------|------------------|--------------|-------------------------|-----------------|--------------------------------|--------------|
| Course | Course           | Water Supply     | Max Day      | 8-hr Irrigation         | 9-hr Irrigation |                                |              |
|        | Irrigation       | (AFY)            | Demand (MGD) | (gpm) <sup>d</sup>      | (gnm)e          |                                |              |
|        | Demand (AFY)     |                  |              | (87)                    | (or)            |                                |              |
| North  |                  |                  | 1.01¢        | 2,105                   | 1,870           |                                |              |
| South  | 640 <sup>a</sup> | 550 <sup>b</sup> | 0.92¢        | 1,915                   | 1,705           |                                |              |
| Total  |                  |                  | 1.93         | 4,020                   | 3,575           |                                |              |

Table 3. Historic and Projected Recycled Water North and South Golf Course Demands

<sup>a</sup> Average of historic 2007 through 2015 golf course irrigation demands (raw plus recycled water deliveries) shown in Table 4

<sup>b</sup> As described in the District's WDR

 $^{\rm c}$  Derived from historic records and discussed with RMCC

<sup>d</sup> Daily 8 hour irrigation period

e Daily 9 hour irrigation period

#### Table 4. Historic Golf Course and Van Vleck Ranch Water Deliveries

|         | Golf Course Deli        | Deliveries to Ven Vlesk Densk |                      |  |
|---------|-------------------------|-------------------------------|----------------------|--|
| Year    | Historic Golf Course    | Deliveries Recycled           | (AFY) <sup>b,c</sup> |  |
|         | Irrigation Demand (AFY) | Water (AFY) <sup>c</sup>      |                      |  |
| 2007    | 561.4                   | 586.1                         | 104.8                |  |
| 2008    | 596.5                   | 487.9                         | 18.2                 |  |
| 2009    | 644.6                   | 451.4                         | 25.1                 |  |
| 2010    | 556.4                   | 418.2                         | 70.7                 |  |
| 2011    | 562.9                   | 335.5                         | 134.1                |  |
| 2012    | 681.3                   | 416.3                         | 1.6                  |  |
| 2013    | 754.2                   | 435.3                         | 0.0                  |  |
| 2014    | 708.4                   | 390.2                         | 0.0                  |  |
| 2015    | 676.5                   | 329.0                         | 10.4                 |  |
| Average | 640                     | 430                           | 40                   |  |
| Maximum | 755                     | 585                           | 135                  |  |
| Minimum | 555                     | 330                           | 0                    |  |

<sup>a</sup> Raw and recycled water deliveries.

<sup>b</sup> Limited to 215 AFY and permitted either as part of the District's current WDR or NPDES Order No. R5-2007-0109 prior to 2015.

<sup>c</sup>. Recycled water deliveries.

Wastewater production estimates shown in Table 5 and illustrated in Figure 6 are based on the development timelines and projections previously described, and 210 gallons per day per residential home connection (gpd/connection) unit flow factor. Recycled water demand estimates were obtained from the latest information; either developer submitted sewer studies<sup>11</sup> or the District's RWD and/or WDR as described in Table A5 in the Appendix.

North Maingate, Stonehouse and Escuela Parks and the District office reuse areas shown in Table 5 reflect conversion from potable to recycled water. Wastewater production shown in Table 5 for these areas is already included as part of a previous line item and thus wastewater production estimates for these particular conversions have been set to 0.

At Buildout, projected wastewater production, based on average levels of precipitation and evaporation, is estimated to be limited to about 940 AFY, which is roughly 35 AFY less than the sum of the projected recycled water demands of 970 AFY. Of this amount, the North and South Golf Courses have the highest priority for recycled water service. The total combined disposal capacity (irrigation demand) of the existing and proposed recycled water use areas, including Van Vleck, is 1,595 AFY.<sup>12</sup> However, this amount of disposal capacity is only anticipated to be required following periods of unusually high levels of precipitation (e.g., above 100-year level of annual precipitation).

#### 2.5: Design Criteria

The following are criteria that will serve as the basis for the development of the District's recommended Recycled Water Program.

#### 2.5.1: Historic Golf Course Irrigation Demands

Historic North and South Golf Course irrigation demands were obtained from District staff and reviewed. As shown in Figure 7, the overall average irrigation demand for the last nine years (i.e., 2007 through 2016) was about 630 AFY (640 AFY without 2006 as indicated in Table 4). The average golf course irrigation demand for the last 4 years was 705 AFY or 12 percent higher than the average of the last 10 years due primarily to the affects and impacts of the recent drought. The District's WDR provides for an estimated total combined golf course recycled water demand of 550 AFY.

Monthly trends were also reviewed and are shown in Figures 8 and 9. Monthly recycled water demands in terms of AF per month are presented graphically in Figure 8 with each point representing the average of two irrigation seasons. As expected, demands are highest during the summer months due to the hotter, drier weather conditions. Monthly recycled water demands presented as percentages of the total annual irrigation season demands are shown in Figure 9. The peak month irrigation demand of 40 percent shown in Figure 9 is considered abnormal given that (1) this value is much higher compared to the others and (2) it was not repeated and thus historic peak monthly demands are expected to represent 20 to 25 percent of the annual irrigation demand. This 20 to 25 percent derived from review of historic data is slightly lower than the 31 percent described in the District's Recycled Water Standards.<sup>13</sup> Discussions with District staff indicated their preference to continue to use 31% as the basis for maximum month/peak day demands.

<sup>&</sup>lt;sup>11</sup> Limited to Murieta Gardens and The Retreats for both wastewater production and recycled water demand estimates.

<sup>&</sup>lt;sup>12</sup> See Provision 17 of the District's Waste Discharge Requirements.

<sup>&</sup>lt;sup>13</sup> See Article 2.1.1 of the District's Recycled Water Standards.

| Development/Proposed<br>Recycled Water Use Area                      | Description                                                                                                            | Projected<br>RW Demand<br>(AFY) | Wastewater<br>Production<br>(AFY) |  |  |  |  |  |  |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------|--|--|--|--|--|--|
| Existing Recycled Water Use Areas                                    |                                                                                                                        |                                 |                                   |  |  |  |  |  |  |
| Existing Development                                                 |                                                                                                                        |                                 |                                   |  |  |  |  |  |  |
| Rancho Murieta North & South Golf<br>Courses                         | 18-hole golf courses (~250 ac)                                                                                         | 550                             | 380.9                             |  |  |  |  |  |  |
| Van Vleck RanchField 1 (~49ac), Field 2 (~25ac),<br>Field 3 (~22 ac) |                                                                                                                        | 215                             |                                   |  |  |  |  |  |  |
| Sub Total                                                            |                                                                                                                        | 550* / 765**                    | 380                               |  |  |  |  |  |  |
| Phase 1 Proposed Expanded Recycled Water Use Areas (~2016-2020)      |                                                                                                                        |                                 |                                   |  |  |  |  |  |  |
| Infill                                                               | 0.05 MGD allocation assumed                                                                                            | 0                               | 56.0                              |  |  |  |  |  |  |
| Main Northgate                                                       | Conversion to recycled water                                                                                           | 2.8                             | 0.0                               |  |  |  |  |  |  |
| District Office <sup>a</sup>                                         | Conversion to recycled water                                                                                           | 5.4                             | 0.0                               |  |  |  |  |  |  |
| Retreats (North, East and West)                                      | 84 residential units                                                                                                   | 15.1                            | 19.8                              |  |  |  |  |  |  |
| Murieta Gardens                                                      | 78 residential units, commercial equivalent to 227 residential units                                                   | 30.5                            | 71.9                              |  |  |  |  |  |  |
| Stonehouse Park (4-acre park)                                        | Conversion to recycled water                                                                                           | 36.2                            | 0.0                               |  |  |  |  |  |  |
| Escuela Park (4-acre park)                                           | Conversion to recycled water                                                                                           | 12.1                            | 0.0                               |  |  |  |  |  |  |
| Commercial Loop (to be developed)                                    | Potential conversion to recycled water;<br>could be 20 to 30 AFY demand; require<br>coordination with Owner to proceed |                                 |                                   |  |  |  |  |  |  |
|                                                                      | Phase 1 Sub Total                                                                                                      | 102                             | 148                               |  |  |  |  |  |  |
|                                                                      | Sub Total                                                                                                              | 650* / 865**                    | 530                               |  |  |  |  |  |  |
| Phase 2 Proposed Expanded Recycle                                    | ed Water Use Areas (~2020-2025)                                                                                        |                                 |                                   |  |  |  |  |  |  |
| Village A                                                            | 167 residential units                                                                                                  | 56.5                            | 39.3                              |  |  |  |  |  |  |
| Village B                                                            | 167 residential units                                                                                                  | 64.6                            | 39.3                              |  |  |  |  |  |  |
| Village C                                                            | 130 residential units                                                                                                  | 49.6                            | 30.6                              |  |  |  |  |  |  |
| Village D                                                            | 42 residential units                                                                                                   | 0                               | 9.9                               |  |  |  |  |  |  |
| Village E                                                            | 43 residential units                                                                                                   | 0                               | 10.1                              |  |  |  |  |  |  |
| Village F                                                            | 95 residential units                                                                                                   | 0                               | 22.3                              |  |  |  |  |  |  |
| Village G                                                            | 53 residential units                                                                                                   | 0                               | 12.5                              |  |  |  |  |  |  |
| Village H                                                            | 122 residential units                                                                                                  | 0                               | 28.7                              |  |  |  |  |  |  |
| Riverview                                                            | 140 residential units                                                                                                  | 0                               | 32.9                              |  |  |  |  |  |  |
| Lakeview                                                             | 99 residential units                                                                                                   | 0                               | 23.3                              |  |  |  |  |  |  |
| Apartments                                                           | 170 residential units                                                                                                  | 23.8                            | 23.3                              |  |  |  |  |  |  |
| Residences of Murieta Hills                                          | 198 residential units                                                                                                  | 73.8                            | 46.6                              |  |  |  |  |  |  |
| Industrial/Commercial/Residential                                    | 160 equivalent residential units                                                                                       | 50.9                            | 37.6                              |  |  |  |  |  |  |
| Van Vleck Ranch                                                      | Sprayfield 4                                                                                                           | 410                             |                                   |  |  |  |  |  |  |
| Future I/I (Average) Contribution                                    | -                                                                                                                      | 0                               | 50ª                               |  |  |  |  |  |  |
|                                                                      | Phase 2 Sub Total                                                                                                      | 320* / 730**                    | 405                               |  |  |  |  |  |  |
|                                                                      | Grand Total                                                                                                            | 970* / 1,595**                  | 935                               |  |  |  |  |  |  |
| * Beneficial reuse                                                   |                                                                                                                        |                                 |                                   |  |  |  |  |  |  |

Table 5. Existing and Proposed Recycled Water Production and Demand Projections

\*\* Beneficial reuse plus Van Vleck sprayfield disposal demandsa Based on 85% of current average I/I contributions of 57.5 AFY described in water balance



Figure 6. Recycled Water Production and Demand Estimates



Figure 7. Historic Annual Golf Course Irrigation Demands (Raw and Recycled Water)



Figure 8. Historic Monthly Golf Course Recycled Water Irrigation Demands (AF per Month)



*Figure 9. Historic Monthly Golf Course Recycled Water Irrigation Demands (Percent of Total Annual Demand)* 

#### 2.5.2: Review of Historic Unit Flows and Golf Course Demands

A workshop was held on January 30, 2017 at the District's office to discuss the draft report, results and recommendations with the District's Board of Directors and solicit and obtain comments and feedback. A copy of the workshop presentation is attached in the appendix for reference. Historic unit flows and golf course demands were reviewed and discussed at the workshop. The District's Board of Directors asked that further analyses be conducted to describe, examine and potentially leverage:

- 1. Higher historic average golf course demands; bracket potential production and future improvement ramifications.
- 2. Review and compare the District's standard to historic unit flow factors; describe alternative approach if recommended along improvement cost ramifications.

Table 6 presents a summary of the data reviewed and further analyzed. Key outcomes derived from this analysis include:

| Year    | Rainfall | ADWF  | Number of Customers | <b>Unit Flow Factor</b> | <b>Total Golf Course</b> |
|---------|----------|-------|---------------------|-------------------------|--------------------------|
|         | (in/yr)  | (MGD) | (Connections)       | (gpd/connection)        | Demand (AFY)             |
| 2006    | 24.50    | 0.49  | 2,542               | 193                     | 548                      |
| 2007    | 14.17    | 0.47  | 2,548               | 184                     | 586                      |
| 2008    | 14.77    | 0.44  | 2,541               | 173                     | 597                      |
| 2009    | 17.52    | 0.43  | 2,544               | 169                     | 645                      |
| 2010    | 29.32    | 0.43  | 2,545               | 169                     | 556                      |
| 2011    | 20.78    | 0.43  | 2,545               | 169                     | 563                      |
| 2012    | 23.08    | 0.40  | 2,545               | 157                     | 681                      |
| 2013    | 6.16     | 0.39  | 2,547               | 153                     | 754                      |
| 2014    | 22.86    | 0.35  | 2,548               | 137                     | 708                      |
| 2015    | 12.86    | 0.35  | 2,549               | 137                     | 677                      |
| Average | 18.60    | 0.42  | 2,545               | 164                     | 632                      |
| Maximum | 29.3     | 0.49  | 2,549               | 193                     | 754                      |
| Minimum | 6.2      | 0.35  | 2.541               | 137                     | 548                      |

#### Table 6. Unit Flow Factors and Golf Course Demands

- Of the data shown in Table 6, rainfall showed the highest level of variability followed by ADWF, unit flow factor and total golf course demand, all having about the same level of variability. Number of customers had the lowest and essentially no variability.
- 2006 and 2007 ADWFs were equivalent to 97 to 98% of the rated 0.5 MGD ADWF capacity. Typically wastewater system expansions are initiated when 80 to 85 % of the rated capacity is exceeded.
- Even though the unit flow factors shown in Table 6 are based on dry summer months, and presumably do not contain infiltration or inflow contributions (I/I), unit flow factors were found to be influenced slightly by rainfall and trend upwards with increased rainfall (165 gpd/customer at 25 in/yr; increase to about 180 gpd/customer near 45 in/yr).
- Total (raw plus recycled water) golf course demands were found to trend downward with increased rainfall. Golf course demands for average rainfall amounts (24.6 in/yr) were projected to be 600 to 630 AFY. However, golf course demands for 100-year levels (45.3 in/yr) were projected to be 550 AFY.

Review of the historic data presented in Table 6 indicates the following:

- As described previously and shown in Table 6, average golf course demands were 630 AFY (approximately, with rounding), or 80 AFY higher than the 550 AFY currently used in the District's RWD or WDR. As shown in Table 7, Scenarios A, C and E were developed to assess the impact an increased golf course demand would have on the improvements recommended in the draft report.
- As described in Table 6, historic unit flow factors ranged between 137 and 193 with an average of 164 gpd per equivalent residential home. As shown in Table 7, Scenarios B and C are based on the overall average demand of 165 (approximately) gpd per equivalent residential home. Scenarios D and E are based on the average of 2012 and 2013 value of 155 gpd per equivalent residential home.

Table 7 presents a summary of analyses results. As shown in Scenarios C and E, use of a lower unit flow factor coupled with an 80 AFY increase in average golf course demand has the potential to impact the following improvements recommended in the draft report:

| Scenario | Unit<br>Flow<br>Factor | Wastewater<br>Production<br>(AFY) | Recycled<br>Water<br>Demand <sup>a</sup><br>(AFY) | Required<br>Storage<br>Capacity <sup>b</sup><br>(AF) | Estimated<br>Storage<br>Cost | Recycled<br>Water<br>Service to<br>Villages A, B<br>and C<br>Required? | Bass Lake<br>Tank<br>Required? |
|----------|------------------------|-----------------------------------|---------------------------------------------------|------------------------------------------------------|------------------------------|------------------------------------------------------------------------|--------------------------------|
| Base     | 210                    | 1,165/985                         | 1,220/550/<br>390/280                             | 880                                                  | \$3.0M                       | Yes                                                                    | Yes                            |
| А        | 210                    | 1,165/985                         | 1,220/630/<br>310/280                             | 880                                                  | \$3.0M                       | Yes                                                                    | Yes                            |
| Bc       | 165                    | 1,085/885                         | 1,135/550/<br>290/295                             | 840                                                  | \$1.1M                       | Yes                                                                    | Yes                            |
| Cc       | 165                    | 1,085/885                         | 1,135/630/<br>210/295                             | 840                                                  | \$1.1M                       | No                                                                     | No                             |
| Dd       | 155                    | 1,060/865                         | 1,110/550/<br>265/295                             | 825                                                  | \$1.0M                       | Yes                                                                    | Yes                            |
| Ed       | 155                    | 1,060/865                         | 1,110/630/<br>185/295                             | 825                                                  | \$1.0M                       | No                                                                     | No                             |

**Table 7.** Summary of Unit Flow Factor and Golf Course Demand Assessment Results

<sup>a</sup> Values represent the following recycled water demands Total/Raw and Recycled Water Golf Course/Urban/Van Vleck Ranch.

<sup>b</sup> See water balances in Appendix.

<sup>c</sup> Scenario approximately equal to the arithmetic average unit flow factor of 2006 through 2015 (164 gpd/customer). <sup>d</sup> Scenario reflects historic 2012 and 2013 values (prior to drought).

- Recycled Water Pumping Station Cost impact expected to be minor/marginal; impact limited to firm pumping capacity reduction.
- Lookout Hill Recycled Water Storage Tank Not required. Sources of supply appear adequate provided future demands do not coincide with golf course recycled water deliveries.
- North Golf Course Conveyance System Limited future service; use of existing 12-inch AC forcemain will be required. However only a small segment of existing 8-inch AC forcemain will be required in the future to serve The Retreats.
- Bass Lake Recycled Water Storage Tank Not required. Sources of supply appear adequate provided future demands do not coincide with golf course recycled water deliveries.

• Seasonal Storage Requirements – Significant cost reduction associated with reducing storage from 880 to 825 AF as indicated in Table 7.

The estimated cost reduction associated these modifications is expected to be in the range of about \$5M or roughly 35% of the total estimated cost presented in the last section of this report. Although this cost reduction is significant, implementation of lower unit flow factors and higher golf course demands is not recommended due to the following:

- Would not reduce or impact potable water demands within District's service area.
- May not be supported by the golf course owners.
- May not coincide with actual wastewater flows produced by the service area. District does not control actual unit flow factors; District's influence is limited to the implementation of drought related water conservation measures which have been described as inelastic (anticipated to increase at some time in the future).
- Places more emphasis and importance on District staff accurately projecting future unit flow factors and requires higher level of management to monitor and manage production/demand and rectify imbalances.
- Decreased recycled water revenue potential coupled with higher likelihood of conveying more recycled water to Van Vleck Ranch. Revenue differentials between Base and Scenarios D and E are estimated to be \$68,750 and \$112,750 per year, respectively based on an assumed cost of \$550 per AF.

#### 2.6: Wastewater Treatment Facility and Reclamation Plant

The existing WWRP receives domestic wastewater and a relatively small amount of commercial wastewater from the community of Rancho Murieta as well as recreational vehicles (RVs) sewage from two RV dump stations. There are no industries or industrial activities that discharge wastewater to the WWRP.

Raw wastewater is pumped to the WWTF and WWRP through three main pumping stations located throughout Rancho Murieta. The WWTF and WWRP provide secondary and tertiary treatment suitable for the production of *disinfected tertiary recycled water* as defined by Title 22 of the California Code of Regulations. Treatment processes and their locations are shown in Figure 10.

The secondary wastewater treatment plant has a permitted ADWF capacity of 1.55 MGD and a 3.0 MGD peak wet weather flow capacity. Secondary treatment takes place in a series of five clay-lined aerated facultative ponds (Aeration Ponds 1 through 5). Secondary effluent is stored in two clay-lined storage reservoirs (Reservoirs 1 and 2) with a combined storage capacity of approximately 747 AF, with two feet of freeboard, prior to tertiary treatment and disinfection. Wastewater is stored in the reservoirs during the rainy season (typically between the months of mid to late October and March) until needed for irrigation of the golf courses during the dry season. Tertiary treatment and disinfection, typically operated from April through mid-October, consists of two dissolved air floatation units, two rapid sand filters, a chlorine gas feed system, chlorine contact basin, and 6,600 linear feet of chlorine contact pipe installed in a concrete lined equalization basin. The design capacity of the tertiary treatment plant is 3.0 MGD, however the disinfection system (i.e., modal contact time) currently has a rated capacity of only 2.3 MGD. After going through tertiary and disinfection facilities, the final effluent is stored in the equalization basin prior to reuse.



Figure 10. Existing WWTF and WWRP

The existing WWTF, WWRP, and recycled water conveyance system serving the North Golf Course are to be leveraged to reduce costs associated with the Phase 1 and Buildout Recycled Water Program.<sup>14</sup> The existing WWRP is designed to produce up to 3.0 MGD provided that the modal contact time is increased through the implementation of a future chlorine contact basin improvement and/or some other means as described in Section 3. The existing Recycled Water Pump Station, which draws recycled water from the equalization basin, requires expansion to satisfy projected increased recycled water demands and pressure requirements. Moreover, this station currently serves two purposes, to pump recycled water to either the North Golf Course and/or the Van Vleck Ranch Sprayfield. To maximize long term pumping efficiency and minimize costs, it is recommended that these two requirements be served by two separate pump stations in the future, if sufficient funding is available.

#### 2.7: Recycled Water Use Areas and Conveyance Systems

The District produces and distributes *disinfected tertiary recycled water* to the Rancho Murieta Country Club (RMCC) for subsequent use via irrigation of two 18-hole golf course properties, the North and South Golf Courses (approximately 250 acres combined area). Both golf courses are operated by the RMCC. The locations of these golf courses are shown in Figure 11. Recycled water is pumped to the golf courses and stored in five unlined irrigation storage reservoirs (Lake 10, Lake 11, Lake 16, Lake 17, and Bass Lake) situated around the golf courses prior to beneficial reuse. The

<sup>&</sup>lt;sup>14</sup> Considering construction, operating and maintenance related (e.g., net present worth) items.
two golf courses are expected to have a combined total annual recycled water irrigation demand of 550 AF during a typical year (e.g., average levels of precipitation) as described in the District's WDR.

*Disinfected tertiary recycled water* can also be used to irrigate three separate pasture lands (sprayfields) on the Van Vleck Ranch. However, the District limits Van Vleck recycled water deliveries to those following wet seasons with above average levels of precipitation because those deliveries do not offset potable water demands. Distribution and use of recycled water at the Van Vleck Ranch is managed by the District. The approximate locations of Sprayfield 1 (49 ac), Sprayfield 2 (25 ac), and Sprayfield 3 (22 ac) are shown on Figure 11. The existing Van Vleck Ranch Sprayfields have a combined total irrigation demand of 215 AFY. An above ground and mobile spray irrigation system is used to apply the recycled water to the sprayfields. A similar system is assumed to be installed to accommodate future development requirements associated with above average levels of precipitation.

The following sections describe the conveyance systems associated with the golf courses and Van Vleck Ranch Sprayfields.

## 2.7.1: North and South Golf Courses

Recycled water conveyance and transmission systems associated with the two golf courses were installed in approximately 1983. Since that time, recycled water has been successfully used in accordance with regulatory requirements to meet golf course irrigation demands. Tertiary treated recycled water is pumped from the equalization basin located at the WWRP to Bass Lake by the Recycled Water Pump Station, which is located adjacent to the equalization basin. Recycled water to be delivered to the North Golf Course is conveyed through a 12-inch asbestos cement pipe (ACP) from the WWRP, across Highway 16, over the foot bridge (Yellow Bridge), to the 10th hole of the North Golf Course. From this point, the pipeline is reduced to an 8-inch ACP and runs east along the golf course fairways to Bass Lake. The exact alignment and/or location of this pipeline appears to be unknown at this time, as does its depth and condition.



Figure 11. Existing Recycled Water Conveyance Systems and Use Areas

Tertiary treated recycled water is also conveyed by gravity from the WWRP to Lake 16 of the South Golf Course through another 12-inch ACP pipeline. Lakes 16 and 17 of the South Golf Course are interconnected by a culvert. From these lakes, recycled water is pumped to Lakes 10 and 11. The pipeline from Lake 17 to Lake 11 also runs along the golf course fairways and is 8-inch, Class 150 ACP.

Irrigation pump stations are located adjacent to both Bass Lake and Lake 11 and are controlled and operated by the RMCC. These stations continuously pump recycled water from the lakes and pressurize the golf course irrigation systems. Multiple pumps are used to meet varying demands, and fertilizer injection systems are also present. The piping material for the irrigation system is PVC and varies in size from 2- to 6-inch in diameter. The main irrigation distribution pipelines run along the golf course fairways with branches for the sprinkler heads. Irrigation valves are located throughout the golf courses to control the operation of the sprinkler heads. Most valves in the fairways control 3 to 4 sprinklers, while each sprinkler on the greens is generally controlled by individual control valves.

Table 8 presents a summary of roles and responsibilities for specific recycled water conveyance system assets. This table was derived from the Agreement for Availability and Use of Reclaimed Water (May 17, 1988) and the Amendment to Agreement for Availability and Use of Reclaimed Water (May 4, 1994).

| Ownership and O&M Costs |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| District                | <b>RMPI</b> <sup>b</sup>                                              | RMCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Х                       |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| n Golf Course           |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| С                       |                                                                       | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         | d                                                                     | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| n Golf Course           |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| С                       |                                                                       | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| С                       | С                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                         |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                         | e                                                                     | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                         | Own<br>District<br>X<br>a Golf Course<br>c<br>a Golf Course<br>c<br>c | Ownership and O&MDistrictRMPIbXImage: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"CCCCCCCCCCCCCCC |

Table 8. Recycled Water Conveyance System Roles and Responsibilities<sup>a</sup>

<sup>a</sup> Adapted from Agreement for Availability and Use of Reclaimed Water (May 17, 1988) and the Amendment to Agreement for Availability and Use of Reclaimed Water (May 4, 1994)

<sup>b</sup> Rancho Murieta Properties, Inc. (RMPI) was the original owner, current owner is Rancho North Properties, LLC.

<sup>c</sup> RMCSD to own, operate and maintain; operation and maintenance costs to be split 50/50 between RMCSD and RMCC.

<sup>d</sup> RMPI to own, RMCC to operate and maintain; operation and maintenance costs to be split 50/50 between RMPI and RMCC.

<sup>e</sup> RMPI to own, RMCC to operate and maintain.

# 2.7.2: Van Vleck Ranch Pipelines

Recycled water can also be pumped from the existing Recycled Water Pump Station to Van Vleck Ranch. Typically, this is only done during years of above average levels of precipitation but is also done at least once every two years to maintain the associated easement rights. Recycled water can be transmitted to Van Vleck Ranch through approximately 1,800 linear feet of aboveground piping. Both 12- and 8-inch Certa-Lok™ PVC irrigation pipes are used to convey recycled water to the Van Vleck Ranch boundary, and about 4,050 linear feet (LF) of aboveground 8-, 6-, 4-, and 3-inch Certa-Lok™ PVC irrigation pipe is used to convey recycled water to three spray irrigation systems. The 12and 8-inch PVC pipeline was installed in 2007 and is owned and operated by the District. One of the three existing pumps within the Recycled Water Pump Station is used to convey recycled water through the transmission pipeline to three sprayfields. There are no potable water or sewer pipelines along the transmission or distribution pipeline alignment.

The distribution system consists of approximately 29 strings of K-line irrigation systems, which are in turn composed of movable sprinklers and 40 millimeter (mm) piping. Each movable sprinkler is housed within a plastic pod. The connecting piping is flexible and the entire string of sprinklers can be moved within each sprayfield.

## 2.7.3: Existing Stonehouse 12-inch Sewer Forcemain

As described in the District's Initial Study/Mitigated Negative Declaration (AECOM, June 2014), the existing Stonehouse 12-inch ACP sewer forcemain may be used in some fashion to convey recycled water to Stonehouse Park (Phase 1), Escuela Park (Phase 1) and Residences of Murieta Hills (Buildout) for recycled water irrigation. As shown in Figure 11, this pipeline extends from the District's Main Lift North Pumping Station to the Stonehouse Park. The District has completed a condition assessment of this pipeline to determine how best to leverage this asset in the future. Future condition assessment is expected to be conducted for the 8- and 12-inch ACPs that convey recycled water from the WWRP to Bass Lake. Information drawn from the next condition assessment will be helpful in refining costs for rehabilitating the North Golf Course Conveyance System.

A risk assessment was conducted to determine the appropriate level of condition assessment to conduct. Assessment results place the Stonehouse 12-inch sewer forcemain in the High Risk Level, which results in recommending a proactive and detailed assessment, including systematic pipe testing. The high risk level assignment was due to the recycled water being considered highly aggressive. Even though the Stonehouse 12-inch sewer forcemain has not been put into service, and has not conveyed recycled water, Phenolphthalein dye test, Shore D and other tests indicate significant wear and reduced useful life. The estimated remaining useful life of the Stonehouse 12-inch sewer forcemain is about 19 years based on specific and assumed service conditions as compared to about 50 to 70 years for a new asbestos cement (AC) forcemain.

Comparison of potential corrosion management alternatives indicated that chemical addition (pH and/or alkalinity addition) is the lowest cost alternative and is thus recommended. Other alternatives considered included non-structural liners and/or forcemain replacement. A copy of the report is included in the Appendix for reference.

## 2.8: Conveyance System Requirements

The hydraulic model developed by AECOM was updated and modified to reflect the proposed configuration of the Buildout recycled water system and setup to provide separate irrigation cycles to accommodate golf course and urban and residential recycled water demands. The model and other data sources (i.e., drawings) served as the means of determining the conveyance system operating requirements, limitations, etc. described below in Sections 2.8.1 through 2.8.5.

## 2.8.1: Recycled Water Supplies and Demands

Recycled water demands shown in the draft AECOM hydraulic model were adjusted to reflect those described in this PDR. Supplies were limited to the production from the WWRP. Tanks and golf course lakes were used to provide operational storage to help satisfy diurnal and instantaneous demands. Demands were limited to existing and proposed reuse areas.

## 2.8.2: Pressure Limitations of Existing Pipelines

The District's ability to convey recycled water both now and in the future relies heavily upon existing Class 150 ACP pipelines, which are close to 33 years old and have rated pressure limitations of about 150 pounds per square inch (psi). The updated model was configured to limit pipeline pressures to below this limitation by:

- Adding a pressure reducing valve (PRV) immediately downstream of the proposed Recycled Water Pumping Station. The downstream PRV setting was 150 psi.
- Verifying that the modeled pressures in the entire system do not exceed the maximum operations pressure of 150 psi.

## 2.8.3: Recycled Water Tank Locations and Elevations

The proposed Lookout Hill Recycled Water Tank was assumed to be configured relatively the same as the abandoned existing tank with respect to size, elevation and maximum water level as assumed and described in the District's Initial Study/Mitigated Negative Declaration. The location of the Bass Lake Tank was also reviewed using the updated hydraulic model. Modeling results indicate that:

- Bass Lake Tank should be located at an elevation that will maintain the Hydraulic Grade Line (HGL) in the existing 8-inch ACP pipeline above the topography's high point to avoid negative pressures in the pipeline; the tank should be set at a base elevation of at least 225.
- Bass Lank Tank should be located relatively close to the existing 8-inch ACP pipeline and uphill, where elevations are increasing (as opposed to on the downside of a hill).

The following are summaries of recommended tank criteria to be used for developing preliminary layouts and costs:

| Recommend Criteria / Requirements | Lookout Hill Tank | Bass Lake Tank  |
|-----------------------------------|-------------------|-----------------|
| Number of Tanks                   | 1                 | 1               |
| Nominal Volume, gal               | 200,000           | 500,000         |
| Diameter, ft                      | 40                | 70              |
| Working Depth, ft                 | 4 to 22           | 4 to 18         |
| Tank Base Elevation               | 244               | <u>&gt;</u> 225 |

 Table 9. Recycled Water Storage Tank Design Criteria (Preliminary)

## 2.8.4: System Controls

The use of the existing ACP conveyance pipelines and their associated hydraulic capacities, limitations, etc. dictate the need to replenish golf course lakes separately from urban and residential recycled water irrigation demands with respect to time. It has been assumed that urban and residential irrigation will occur over an 8- or 9-hour period between the hours of 9 or 10 pm and 6 am. The refilling of the golf course lakes will take place between the hours of 6 am and 9 or 10 pm, during the periods when urban and residential irrigation are not occurring. The following is a summary of the irrigation cycle times used for system modeling:

| • | Urban and Residential Irrigation: | 8- or 9-hour period between 9 or 10 pm and 6 am                               |
|---|-----------------------------------|-------------------------------------------------------------------------------|
| • | Refilling of Golf Course Lakes:   | 6 am and 9 or 10 pm (non-urban and residential irrigation hours)              |
| • | Golf Course Irrigation:           | May occur at any time and be drawn from Lakes 10,<br>11, 16, 17 and Bass Lake |

Timing of recycled water deliveries is anticipated to require the installation of the following process, flow, etc., control elements. These items were incorporated into the hydraulic model and will serve as the basis for developing the instrumentation and control cost estimates described in Section 4.

- 1. **Recycled Water Pumping Station Pressure Reducing Valve (Phase 1).** To be located immediately downstream of proposed Recycled Water Pumping Station. Limit pressurization of pipelines to below the maximum operating pressure.
- 2. **Recycled Water Pumping Station Flow Meter (Phase 1).** To be located immediately downstream of proposed Recycled Water Pumping Station. Meter demands and records in Supervisory Control and Data Acquisition (SCADA).
- 3. **Recycled Water Pumping Station Pressure Gauge (Phase 1).** To be located downstream of proposed Recycled Water Pumping Station along existing 12-inch ACP pipeline or at critical (i.e., location experiencing highest pressure) location near Yellow Bridge.

Measures pipeline operating pressure and records in SCADA. The speed of the pumps within the Recycled Water Pumping Station will be reduced upon a high pressure reading or shutdown if needed.

4. Lookout Hill Flow Control (Open / Close) Valve (Phase 1). To be installed and used to isolate the 12-inch pipeline leading to Murieta Gardens (and ultimately Stonehouse and Escuela Parks and Residences of Murieta Hills) from the existing North Golf Course Transmission Main. This leg will be shut off and refilled from the Lookout Hill Tank and pressurized by the Lookout Hill Booster Pumping Station when Bass Lake is being filled for golf course irrigation.

This flow control valve should be configured to open based on time - when urban and residential irrigation begins at 9 or 10 pm - and close once urban and residential irrigation has been completed and the Lookout Hill Tank is full; which is anticipated to be around 6 am.

5. **Bass Lake Flow Control (Open/Close) Valve (Phase 1).** To be installed to control recycled water conveyance into Bass Lake. The valve is recommended to be located on the existing Bass Lake pipeline downstream of the split to Bass Lake Tank connection. The Bass Lake fill pipeline will essentially be isolated (shut off) from the remaining system during urban and residential irrigation.

This flow control valve should be configured to close based on time - when urban and residential irrigation begins at 9 or 10 pm and remain closed through 6 am.

- 6. **Lookout Hill Tank Altitude Valve (Phase 1).** To be installed to automatically shutoff recycled water source once the tank has reached a predetermined maximum operating level (assumed to be 266 in the hydraulic model).
- 7. **Bass Lake Tank Altitude Valve (Buildout).** To be installed to automatically shutoff recycled water source once the tank has reached a predetermined maximum operating level (assumed to be 243 in the hydraulic model).

- 8. **Lookout Hill Booster Pumping Station (Phase 1).** To be installed downstream of the proposed tank and have a nominal capacity of 1,000 gpm. In order to support the delivery of recycled water for drip irrigation throughout the day, the Lookout Hill Booster Pumping Station will be configured to maintain pressure within the 12-inch pipeline serving Murieta Gardens, Stonehouse and Escuela Parks, Main Northgate and Residences of Murieta Hills to a predetermined set point during the golf course irrigation cycle.
- 9. **Bass Lake Tank Booster Pumping Station (Buildout).** To be installed downstream of the proposed tank and have a nominal capacity of 1,200 gpm.
- 10. Lookout Hill Pressure Gauge (Phase 1). To be installed downstream of Lookout Hill Flow Control Valve along 12-inch pipeline, potentially at critical location (i.e., location experiencing highest pressure) near Main Lift North Pumping Station.

This pressure gauge will continuously monitor pipeline pressure and send this data to SCADA. If operating pressures above the pipeline's capacity are experienced, SCADA will lower the pump speed or shut down the Recycled Water Pumping Station pumps. In order to support the delivery of recycled water irrigation throughout the day, the Lookout Hill Booster Pumping Station will be configured to maintain pressure within the 12-inch pipeline serving Murieta Gardens, Stonehouse and Escuela Parks, Main Northgate and Residences of Murieta Hills if needed to a predetermined set point during the golf course irrigation cycle.

## 2.8.5: Proposed Operating Strategy

The following tables provide a summary of the proposed statuses and actions of the system elements during urban and golf course irrigation cycles.

| System Element |                                   | Urban and Residential              | Golf Course Supply                |
|----------------|-----------------------------------|------------------------------------|-----------------------------------|
|                |                                   | Irrigation                         |                                   |
|                | Approximate Timeframe             | 9 or 10 pm to 6 am                 | 6 am to 9 or 10 pm                |
| 1              | RWPS PRV                          | Measure, SCADA Monitors, ≥ 150 psi | ≥ 150 psi; lower speed, shutdown  |
|                |                                   | lower speed, shutdown              | pumps if required                 |
|                |                                   | pumps if required                  |                                   |
| 2              | RWPS Flow Meter                   | Measure and Record                 | Measure and Record                |
| 3              | RWPS Pressure Gage                | Measure, SCADA Monitor             | Measure, SCADA Monitor            |
| 4              | Lookout Hill Flow Control Valve   | Open                               | Closed                            |
| 5              | Bass Lake Flow Control Valve      | Closed                             | Open                              |
| 6              | Lookout Hill Tank Altitude Valve  | Open; Periodically Closed w/Fill   | Closed                            |
| 7              | Bass Lake Tank Altitude Valve     | Future                             | Future                            |
| 8              | Lookout Hill Booster Pumping      | 1,000 gpm @ 150 ft TDH to          | Configured to maintained nominal  |
|                | Station                           | maintain minimum 40 psi to         | pressure                          |
|                |                                   | downstream service                 |                                   |
| 9              | Bass Lake Booster Pumping Station | Future                             | Future                            |
| 10             | Lookout Hill Pressure Gauge       | Measure, SCADA Monitors; ≥ 150     | Measure, SCADA Monitor; Turn on   |
|                |                                   | psi shutdown Recycled Water        | Lookout Hill Booster Pumping      |
|                |                                   | Pumping Station pumps              | Station on low pressure set point |

Table 10. Proposed Strategy - Phase 1 Operations

| System Element |                                   | Urban and Residential            | Golf Course Supply                  |  |
|----------------|-----------------------------------|----------------------------------|-------------------------------------|--|
|                |                                   | Irrigation                       |                                     |  |
|                | Approximate Timeframe             | 9 or 10 pm to 6 am               | 6 am to 9 or 10 pm                  |  |
| 1              | RWPS PRV                          | Measure , SCADA Monitors, ≥ 150  | ≥ 150 psi; shutdown pumps           |  |
|                |                                   | psi shutdown pumps               |                                     |  |
| 2              | RWPS Flow Meter                   | Measure and Record               | Measure and Record                  |  |
| 3              | RWPS Pressure Gage                | Measure, SCADA Monitor           | Measure, SCADA Monitor              |  |
| 4              | Lookout Hill Flow Control Valve   | Open                             | Closed                              |  |
| 5              | Bass Lake Flow Control Valve      | Closed                           | Open                                |  |
| 6              | Lookout Hill Tank Altitude Valve  | Open; Periodically Closed w/Fill | Closed                              |  |
| 7              | Bass Lake Tank Altitude Valve     | Open                             | Open until tank filled, then Closed |  |
| 8              | Lookout Hill Booster Pumping      | 1,000 gpm @ 150 ft TDH to        | Configured to maintained nominal    |  |
|                | Station                           | maintain minimum 40 psi to       | pressure notaries                   |  |
|                |                                   | downstream service               |                                     |  |
| 9              | Bass Lake Booster Pumping Station | 1,200 gpm @ 120 ft TDH to        | Configured to maintained nominal    |  |
|                |                                   | maintain minimum 40 psi to       | pressure                            |  |
|                |                                   | downstream service               |                                     |  |
| 10             | Lookout Hill Pressure Gauge       | Measure, SCADA Monitors; ≥ 150   | Measure, SCADA Monitor; Turn on     |  |
|                |                                   | psi shutdown Recycled Water      | Lookout Hill Booster Pumping        |  |
|                |                                   | Pumping Station pumps            | Station on low pressure set point   |  |

 Table 11. Proposed Strategy - Buildout Operations

## 2.9: Regulatory Compliance

The following describe the status of the District's Recycled Water Program with respect to environmental (California Environmental Quality Act) and regulatory (Regional Board) review.

## 2.9.1: Environmental Compliance

The final IS/MND determined that expanding the District's recycled water areas to serve new development within the District's service area would not have any significant adverse effects on the environment based on a specific system configuration and after implementing the following mitigation measures<sup>15</sup>:

#### AESTHETICS

• **Mitigation Measure AES-1: Replace Landscaping.** District to coordinate with affected landowners to restore or replace plantings consistent with pipeline safety, maintenance, and easement requirements in affected landscape areas.

#### AIR QUALITY

- Mitigation Measure AQ-1: Implement Applicable SMAQMD Basic Construction Emission Control Practices. District to comply with prescribed measures to reduce fugitive dust and construction equipment exhaust emissions.
- Mitigation Measure AQ-2: Implement SMAQMD Requirements to Reduce Construction-Related NOX Emissions. District and/or contractor to submit to SMAQMD comprehensive inventory of all off-road diesel construction equipment, equal to or greater than 50 horsepower, that will be used in aggregate of 40 or more hours during any portion of construction.

<sup>&</sup>lt;sup>15</sup> Complete listing of mitigation measures is provided in this PDR along with brief descriptions. More complete descriptions and information can be obtained from the IS/MND.

#### BIOLOGY

- **Mitigation Measure BIO-1: Protect Special-status Plant Species.** District and its primary construction contractor shall implement prescribed measures to reduce impacts on special-status plant habitat.
- **Mitigation Measure BIO-2: Protect Valley Elderberry Beetle.** District and its primary construction contractor shall implement prescribed measures to reduce impacts on valley elderberry beetles.
- **Mitigation Measure BIO-3: Protect Western Pond Turtle.** District and its primary construction contractor shall implement Mitigation Measures HYD-1 and HYD-3 to ensure no construction area erosion, sedimentation, or pollution enters any western pond turtle habitat.
- Mitigation Measure BIO-4: Conduct Pre-Construction Surveys for Swainson's Hawk and Implement Avoidance and Minimization Measures. District and its primary construction contractor shall implement specific prescribed measures to protect nesting Swainson's hawks.
- Mitigation Measure BIO-5: Conduct Pre-Construction Surveys for Nesting Raptors and Other Migratory Birds and Implement Avoidance and Minimization Measures. District and its primary construction contractor shall implement specific prescribed measures to protect nesting raptors and other nesting migratory birds.
- **Mitigation Measure BIO-6: Worker Environmental Awareness Program.** Before start of each new construction season, a worker environmental awareness training program shall be conducted by a qualified biologist.
- **Mitigation Measure BIO-7: Protect Wetlands and Drainages.** District and its primary construction contractor shall implement specific prescribed measures to reduce impacts to wetlands and drainages.
- **Mitigation Measure BIO-8: Comply with Tree Preservation Ordinance.** District and its primary construction contractor shall implement specific prescribed measures to reduce impacts to protected oaks and other native trees.

#### **CULTURAL RESOURCES**

- Mitigation Measure CUL-1: Immediate Halt Construction Activities If Any Cultural Materials Are Discovered.
- Mitigation Measure CUL-2: Conduct Construction Personnel Education, Stop Work if Paleontological Resources Are Discovered, Assess the Significant of the Find, and Prepare and Implement a Recovery Plan Required. To minimize potential adverse impacts on important paleontological resources, District, where construction would occur along or in the immediate vicinity of Stonehouse Road, shall retain qualified paleontologist to train all construction personnel and immediately cease work in the vicinity of the find and notify the Sacramento County Planning and Community Development Department.
- Mitigation Measure CUL-3: Immediately Halt Construction Activities if Any Human Remains Are Discovered.

#### GEOLOGY

• Mitigation Measure GEO-1: Prepare a Site-Specific Landslide Hazard Evaluation and Implement Engineering Recommendations. District to hire licensed geotechnical or civil engineer to perform site-specific evaluation of the landslide potential in areas of moderate or steep slopes where each of the proposed storage tanks would be placed.

• Mitigation Measure GEO-2: Prepare and Implement a Grading and Erosion Control Plan. Before start of earthmoving activities greater than one acre of disturbance, District to prepare grading and erosion control plan and submit to Sacramento County Planning and Development Department for review before issuance of any grading permit for on-site work.

#### HAZARDS

- **Mitigation Measure HAZ-1: Implement a Site Investigation to Determine the Presence of Naturally Occurring Asbestos (NOA) and, if necessary, Prepare and Implement Asbestos Dust Control Plan.** District to conduct site investigation to determine whether and where NOA is present in the construction area. If site investigation determines that NOA is present within the proposed construction area then the District to prepare an Asbestos Dust Control Plan for approval by SMAQMD.
- **Mitigation Measure HAZ-2: Prepare and Implement a Construction Traffic Control Plan.** District and its primary construction contractor to prepare and implement traffic control plan for construction activities.

#### HYDROLOGY AND WATER QUALITY

- Mitigation Measure HYD-1: Prepare and Implement a Storm Water Pollution Prevent Plan and Associated Best Management Practices. For activities disturbing 1 or more acres (including phased construction of smaller areas that are part of the District's Recycled Water Program), District and its primary construction contractor to obtain coverage under the SWRCB's NPDES stormwater permit for general construction activities (Order No. 2009-0009-DWQ).
- Mitigation Measure HYD-2: Evaluate and Implement Construction Site Dewatering Controls. If construction dewatering is required, District shall evaluate reasonable options for dewatering management and ensure that controls on construction site dewatering are implemented during construction dewatering activities.
- **Mitigation Measure HYD-3: Prepare and Implement a Fac-Out and Undercrossing Contingency Plan.** If drilling mud is needed during construction, the District will develop and follow procedures to prevent the mix that is used during drilling from being discharged onto the ground surface when installing pipelines using trenchless construction methods.

#### **NOISE POLLUTION**

- **Mitigation Measure NOI-1: Provide Noise Shielding for Pump Stations.** District to design the proposed pump station with shielding, as needed, to achieve noise levels below 55 dBA at 50 feet.
- Mitigation Measure NOI-2: Implement Feasible Noise Abatement Measure for Construction Equipment. District to require contractors to implement feasible noise abatement measures for noise-producing equipment.

#### RECREATION

• **Mitigation Measure REC-1: Coordinate with RMCC Prior to Construction.** District to coordinate with RMCC at least 30 days prior to construction activities that could affect golf course operations, including access to the course and course play.

## 2.9.2: Regulatory Requirements

As previously described, the District falls under the jurisdiction of the Regional Board with respect to wastewater and recycled water. A summary of specific requirements related to the District's need to provide sufficient seasonal storage capacity, approval of proposed future WWRP and recycled water system improvements and use areas are described below and were obtained from the District's WDR:

- **Seasonal Storage Capacity:** On or about 1 October of each year, available storage capacity shall at least equal the volume necessary to provide sufficient capacity to accommodate allowable wastewater flow, design seasonal precipitation, and ancillary inflow and infiltration during the winter while ensuring continuous compliance with all WDR requirements. Design seasonal precipitation shall be based on total annual precipitation using a return period of 100 years, distributed monthly in accordance with historical rainfall patterns.
- Recycled Water System Improvements and Future Recycled Water Use Areas: The District shall submit an *Improvements Completion Report* upon completion of any improvements, which may include expansion of the disinfection system, effluent storage, and/or recycled water distribution system and infrastructure improvements to deliver recycled water to the new and expanded recycled water use areas as described in the District's WDR. The *Improvements Completion Report* shall be submitted to the Regional Board for review and approval at least 60 days prior to operational use of such improvements, facilities and/or systems. The report shall document the construction of the improvements, certify that improvements are fully functional, and certify that any new or expanded recycled water use areas are ready to receive recycled water in compliance with the requirements of the District's WDR. The report shall include design parameters (for treatment system), final dimensions and volume at 2-feet of freeboard (for ponds), as-built drawings of the WWRP improvements, and a map showing new recycled water use areas.
- **WWRP:** The District shall submit a *Capacity Increase Report* documenting that the WWRP has sufficient storage and disposal capacity for increasing the WWRP ADWF influent flow to more than 0.5 MGD while being in compliance with all applicable specifications, limitations, and provisions of the District's WDR. The report shall certify that the new recycled water use areas (e.g., existing parks and common area, recycled water residential irrigation developments and/or expanded Van Vleck Ranch Use Area (Sprayfield 4)) are ready to receive recycled water in compliance with the requirements of the WDR. The *Capacity Increase Report* shall be submitted to the Regional Board for review and approval at least 60 days prior to increasing the WWRP influent flow beyond 0.5 MGD.

#### THIS PAGE INTENTIONALLY BLANK

# Section 3: Recommended Improvements

This section presents design features and descriptions for the recommended Phase 1 Recycled Water Improvements Project which is comprised of Phase 1 WWRP Improvements and Phase 1 Recycled Water Conveyance System Improvements. Recommended future Buildout Recycled Water Improvements have also been identified and recommended. The features described in the tables below were developed from the criteria described in Section 2 of this PDR. A summary of Phase 1 and Buildout Recycled Water Improvements are presented in Tables 12 and 13, respectively.

| Process / Element                                | Criteria / Feature                  |
|--------------------------------------------------|-------------------------------------|
| 1. Recycled Water SCADA Control System           |                                     |
| Number of SCADA Terminals                        | 1                                   |
| Location                                         | WWRP                                |
| Туре                                             |                                     |
| Lookout Hill                                     | Programmable Logic Controller (PLC) |
| Control Valves                                   | Remote Terminal Units               |
| Communication                                    | Radio*                              |
| Control                                          | Pressure                            |
| 2. Equalization Basin Potable Water Air Gap Conn | ection                              |
| Flow Rate (maximum)                              | 900 gpm                             |
| Diameter                                         | 8-inch                              |
| Material                                         | Ductile Iron                        |
| Air Gap (90° Bend)                               | 16 inches per RW-17                 |
| 3. Rehabilitate Existing Recycled Water Pumping  | Station                             |
| Pump Type                                        | Vertical Turbine                    |
| Number of Pumps                                  | Two (2) duty; one (1) stand by      |
| Total Dynamic Head                               | 325 feet                            |
| Pump Flow                                        | 1,500 gpm                           |
| Motor Horsepower                                 | 200 HP                              |
| Backup Power                                     | 200 KW Standby Diesel Generator     |
| Control Method                                   | Pressure                            |
| Chemical Feed System                             | pH Control/Alkalinity addition      |
| 4. District Headquarters Conversion – Recycled W | ater Irrigation System Connection   |
| Site Supervisor                                  | District (Paul Siebensohn)          |
| Type of Landscape                                | Grass in front yard and medians     |
| Type of Irrigation                               | Spray and drip                      |
| Area (approximate)                               | 1.8 acres                           |
| Water Demand (estimated)                         | 5.4 AFY                             |
| Pipe Diameter                                    | 4-inch                              |
| Pipe Material                                    | PVC                                 |
| 5. Northwest Recycled Water Transmission Main    |                                     |
| Pipeline Length (total)                          | 11,600 lineal feet, total           |
| Highway 16 Undercrossing                         | 1,000 lineal feet (approximately)   |
| Legacy Lane to Lookout Hill Tank                 | 2,800 lineal feet (approximately)   |
| Lookout Hill Tank to 12-inch Forcemain           | 2,400 lineal feet (approximately)   |
| 12-inch Forcemain along Stonehouse Road to       | 5,400 lineal feet (approximately)   |
| Stonehouse and Escuela Parks                     |                                     |
| Diameter                                         | 12 inch                             |
| Buried Pipeline Materials                        | PVC or HDPE pipe                    |

**Table 12.** Recommended Phase 1 Recycled Water Improvements Features and Components

| Pre  | ocess / Element                                | Criteria / Feature                     |
|------|------------------------------------------------|----------------------------------------|
|      | Above Grade Pipeline Materials                 | Steel or Ductile Iron pipe             |
|      | Pipeline Labeling                              | "Recycled Water, Do Not Drink"         |
|      | Pipe Color or Wrapping                         | Purple or wrapped with purple tape     |
|      | Air and Blowoff Valves                         | District Standards                     |
|      | Others                                         | See District Standards                 |
| 6. I | Lookout Hill Booster Pumping Station           |                                        |
|      | Ритр Туре                                      | Vertical Turbine                       |
|      | Number of Pumps                                | One (1) duty; one (1) stand by         |
|      | Total Dynamic Head                             | 150 feet TDH                           |
|      | Pump Flow                                      | 1,000 gpm (maximum)                    |
|      | Motor Horsepower                               | 50 HP                                  |
|      | Pump Housing                                   | Not required                           |
|      | Backup Power                                   | 50 KW Standby Diesel Generator         |
|      | Control Method                                 | Pressure                               |
| 7. I | Escuela Park Conversion – Recycled Water Irrig | ation System Connection                |
|      | Site Supervisor                                | Rancho Murieta Association (RMA) (TBD) |
|      | Type of Landscape                              | Plantings and flowers now              |
|      | Type of Irrigation                             | Spray and drip                         |
|      | Area (approximate)                             | 4 acres                                |
|      | Water Demand (estimated)                       | 12.1 AFY                               |
|      | Pipe Diameter                                  | 4-inch                                 |
|      | Pipe Material                                  | PVC                                    |
| 8. 9 | Stonehouse Park Conversion – Recycled Water 1  | Irrigation System Connection           |
|      | Site Supervisor                                | RMA (TBD)                              |
|      | Type of Landscape                              | Grass primarily (fields)               |
|      | Type of Irrigation                             | Spray and drip                         |
|      | Area (approximate)                             | 12 acres                               |
|      | Water Demand (estimated)                       | 36.2 AFY                               |
|      | Pipe Diameter                                  | 4-inch                                 |
|      | Pipe Material                                  | PVC                                    |
| 9.1  | Lookout Hill Recycled Water Storage Tank       |                                        |
|      | Number of Tanks                                | 1                                      |
|      | Diameter                                       | 40                                     |
|      | Height (maximum at sidewall)                   | 26                                     |
|      | Volume (nominal)                               | 200,000 gallons                        |
|      | Materials of Constructed                       | Bolted Steel                           |
| 10   | . North Maingate Conversion – Recycled Water I | Irrigation System Connection           |
|      | Site Supervisor                                | RMA (TBD)                              |
|      | Type of Landscape                              | Grass, flower beds, plantings          |
|      | Type of Irrigation                             | Spray and drip                         |
|      | Area (approximate)                             | 1.2 acres                              |
|      | Water Demand (estimated)                       | 2.8 AFY                                |
|      | Pipe Diameter                                  | 4-inch                                 |
|      | Pipe Material                                  | PVC                                    |

\*Wireless I/O can be used alternatively

| Process / Element                                | Criteria / Feature                                  |
|--------------------------------------------------|-----------------------------------------------------|
| A. Disinfection Facilities Upgrade               |                                                     |
| Existing Contact Basin Modal Contact Time        | 27 minutes at 3.0 MGD <sup>1</sup>                  |
| Required Modal Contact Time                      | 90 minutes (minimum)                                |
| Additional Modal Contact Time Required           | 63 minute (minimum)                                 |
| New Contact Basin Efficiency                     | 90%                                                 |
| (Assumed Baffling Factor)                        |                                                     |
| Required Contact Basin Volume                    | 145,835 gal, minimum; 146,610 gal actual            |
| Length to Width to Depth Ratios                  | Target 40:1:1.5; Actual 40:1:1.4                    |
| Length (without walls)                           | 280 ft total (3 passes, each at 93.33 ft long)      |
| Width (without walls)                            | 21 ft total (3 passes, each at 7 ft wide)           |
| Depth (without walls)                            | 10 ft                                               |
| B. North Golf Course Conveyance System Rehabilit | ation                                               |
| WWRP to Bass Lake                                | 11,200 lineal feet (12- and 8-inch)                 |
| Replacement (allocation)                         | 4,300 lineal feet, 12-inch                          |
| CIPP Rehabilitation (allocation)                 | 3,800 lineal feet, 8-inch                           |
| Replacement                                      | 1,900, 8-inch                                       |
| C. Bass Lake Recycled Water Storage Tank         | -                                                   |
| Number of Tanks                                  | 1                                                   |
| Diameter                                         | 70                                                  |
| Height (maximum at sidewall)                     | 22                                                  |
| Volume (nominal)                                 | 500,000 gallons                                     |
| Materials of Constructed                         | Bolted Steel                                        |
| D. Bass Lake Booster Pumping Station             |                                                     |
| Ритр Туре                                        | Vertical Turbine                                    |
| Number of Pumps                                  | One (1) duty; one (1) stand by                      |
| Total Dynamic Head                               | 120 feet                                            |
| Pump Flow                                        | 1,200 gpm                                           |
| Motor Horsepower                                 | 50 HP                                               |
| Pump Housing                                     | Not required                                        |
| Backup Power                                     | 50 KW Standby Diesel Generator                      |
| Control Method                                   | Pressure                                            |
| E. Seasonal Storage Reservoir                    |                                                     |
| Existing Storage Capacity                        | 728.2 AF                                            |
| Required Storage Capacity (minimum)              | 880 AF <sup>2</sup>                                 |
| Incremental Capacity Upgrade                     | 900 AF                                              |
| F. Van Vleck Sprayfield No. 4                    |                                                     |
| Extension of Recycled Water Transmission Main    | 1,000 lineal feet of 12-inch Certa-Loc <sup>™</sup> |
| Sprayfield 4 Transmission Main                   | 5,000 lineal feet of 6-inch Certa-Loc <sup>™</sup>  |
| Sprayfield 4 Transmission & Distribution Mains   | 4,000 lineal feet of 4-inch Certa-Loc <sup>™</sup>  |
| Irrigation System                                | 9 K-line Strings                                    |
| Depth of Cover                                   | None, all located aboveground                       |
| G. Dissolved Air Flotation Feed Pump Improvemen  | nts                                                 |
| Replacement of 3 <sup>rd</sup> Feed Pump         | \$100,000 Allocation                                |

 Table 13. Recommended Buildout Recycled Water Improvements Features and Components

<sup>1</sup> See Figure 1-3 of *WWRP Modified Chlorine Contact Disinfection System Compliance Report* (HSe, July 2006). Equivalent volume of 56,250 gallons

2 See Buildout water balance in Appendix.

## 3.1: Recommended Phase 1 WWRP Improvements

The four recommended Phase 1 WWRP improvements are illustrated in Figure 12. Descriptions of each recommended improvement are provided after Figure 12.



Figure 12. Proposed Phase 1 WWRP Improvements

## 3.1.1: Control System for Recycled Water Conveyance and Storage System

A SCADA system and telemetry is recommended to control delivery of recycled water throughout the existing and proposed recycled water conveyance and storage system. This also includes the installation of the control valves and elements previously described in Section 2.8.4 to manage and monitor recycled water storage, conveyance and distribution.

# 3.1.2: Equalization Basin Potable Water Air Gap Connection

This improvement is required to supplement recycled water with potable water and meet peak recycled water demands while maximizing the use of recycled water within the community. This improvement requires connection to the existing 8-inch (in) potable water pipeline located immediately north of the equalization basin at the WWRP, installing an 8-inch extension to the equalization basin, and installing an 8-in air gap connection to deliver potable water to the equalization basin. Figure 13 shows the proposed pipeline and air gap separation. The connection between the existing potable water pipeline and the air gap will require approximately 20 feet (ft) of 8-in ductile iron pipe (DIP) and a flow meter, isolation and control valves and bends. The existing 8-inch potable water pipeline is assumed to have a capacity of 900 gpm or greater.





#### NOTE:

VESSEL - IN NO CASE LESS THAN 1 INCH.

**AIR GAP SEPARATION** SCALE: NONE



1. THE TERM "AIR GAP" SHALL MEAN A PHYSICAL SEPARATION BETWEEN THE FREE FLOWING DISCHARGE END AND A RECYCLED WATER SUPPLY PIPELINE AND AN OPEN OR NON-PRESSURE RECEIVING VESSEL. AN "APPROVED AIR GAP" SHALL BE AT LEAST DOUBLE THE DIAMETER OF THE SUPPLY PIPE MEASURED VERTICALLY ABOVE THE OVERFLOW RIM OF THE



Kennedy/Jenks Consultants

RANCHO MURIETA COMMUNITY SERVICE DISTRICT

PROPOSED POTABLE WATER AIR GAP AND CHLORINE CONTACT **IMPROVEMENTS** K/J 1670011\*00 DEC 2016

Figure 13

THIS PAGE INTENTIONALLY BLANK

#### Recycled Water Program Preliminary Design Report

Projected average and maximum month/maximum day potable water supplementation requirements are summarized in Table 14:

|           | Recycled Water Demands |                   |                                         | Supplemental Potable Water Requirements <sup>b</sup> |               |               |
|-----------|------------------------|-------------------|-----------------------------------------|------------------------------------------------------|---------------|---------------|
| Condition | Avg Annual             | Max Month/Max Day | Instan Urban /                          | Avg Annual                                           | Max Month/Max | Instan Urban  |
| Condition | (AFY) <sup>a</sup>     | (MGD)             | Golf Course                             | (AFY) <sup>a</sup>                                   | Day           | / Golf Course |
|           |                        |                   | (gpm)                                   |                                                      | (MGD)         | (gpm)         |
| Phase 1   | 650                    | 2.27              | 715¢ / 2,010d                           | 120                                                  | 0.30          | 900 / 310     |
| Buildout  | 970                    | 3.35              | 2,955 <sup>c</sup> / 2,010 <sup>d</sup> | 110                                                  | 0.35          | 900 / 0       |

Table 14. Projected Recycled and Supplemental Potable Water Demands<sup>b</sup>

<sup>a</sup> Values rounded to the nearest 5

<sup>b</sup> Derived from calculations; actual supplementation requirements might vary depending on operations and when Phase 1 recycled water system is put into service

<sup>c</sup> Value based on 8-hour urban irrigation demand

<sup>d</sup> Golf course supply assumed to occur over 16 hour period between 6 am and 10 pm

#### 3.1.3: Rehabilitate Recycled Water Pumping Station

The objective of this improvement is to provide adequate pumping capabilities to the North Golf Course Transmission Main through the rehabilitation of the existing Recycled Water Pumping Station. Currently, this facility is configured to pump recycled water to either the North Golf Course or Van Vleck Ranch. Following rehabilitation, this station will continue to operate in this fashion, but with an increased firm capacity to satisfy maximum month / maximum day demands of the North Golf Course and new recycled water use areas with no or minimal booster pumping.

The rehabilitated Recycled Water Pumping Station will be designed to deliver up to 3,000<sup>16</sup> gallons per minute (gpm) to the North Golf Course, new recycled water use areas, Lookout Hill Tank, and other future developments and the future Bass Lake Recycled Water Storage Tank. Each of the new pumps will be equipped with VFDs to minimize energy use and provide the ability to function efficiently under both operating scenarios (urban, residential and golf course irrigation).

Following rehabilitation, the Recycled Water Pumping Station will be used to transport recycled water from the equalization basin to the North Golf Course and to the following other recycled water use areas:

- Phase 1: District Office, Main Northgate, Stonehouse and Escuela Parks, Murieta Gardens and The Retreats
- Buildout: Phase 1, Villages A, B and C, Residences of Murieta Hills, Apartments and Industrial/Commercial/Residential

The pumping station will continue to have 3 vertical turbine pumps (2 duty, one standby). All 3 pumps will be equipped with VFDs to adjust pump speed. The pumping station will be designed to operate efficiently at anticipated modes of operation (i.e., Phase 1 and Buildout;). It has been assumed that the existing electrical service is sufficient to support the increased load, and that the existing motor control centers (MCCs) can house the MCCs for the new pumps. A new electrical service, upgrade or MCC building or structure is not anticipated to be required or included in the cost estimate. A new chemical addition system would also be installed for pH adjust and/or alkalinity addition and would be comprised of a 7,500 gallon tank with containment and equipped

<sup>&</sup>lt;sup>16</sup> Equal to estimated maximum month / peak day urban recycled water demands. Modeling results indicate that lower capacity pumping station or recycled water storage tanks could be installed. System optimization was considered outside of the scope of work given the amount of work required to update the hydraulic model.

with level monitor and mixer (and potentially insulated and heat traced if caustic is used); flow meter; two chemical feed pumps (one duty, one standby), safety equipment, piping and valves.

## 3.1.4: District Headquarters Connection Irrigation System

As shown in Figure 14, the two existing potable water irrigation services associated with the District's Administration Building will be disconnected at their Points of Service and connected to the Recycled Water Pumping Station for irrigation supply. Following modification, cross-connection testing will be conducted to verify that only the irrigation system is receiving recycled water and to ensure that potable water facilities are not connected to the recycled water system. As shown in Figure 14, 270 lineal ft of new 4-in PVC pipeline and associated appurtenances are anticipated to be required for this improvement.

## 3.2: Recommended Phase 1 Conveyance System Improvements

Recommended Phase 1 and Buildout Conveyance System Improvements are illustrated in Figure 15. Descriptions of the recommended Phase 1 Recycled Water Conveyance System Improvements are provided after Figure 16.

## 3.2.1: Northwest Recycled Water Transmission Main

The Northwest Recycled Water Transmission Main will convey recycled water from the Yellow Bridge (approximately) to Stonehouse and Escuela Parks and will be comprised of the following components (see Figure 15):

- a. **Highway 16 Undercrossing and Connection to Existing 12-inch ACP:** A new 12-inch pipeline and Highway 16 undercrossing are required to connect the recently installed 12-inch recycled water pipeline located along Legacy Lane within the Murieta Gardens development. Approximately length of this pipeline is 1,000 feet.
- b. 12-inch Legacy Lane Pipeline, Lookout Hill Storage Tank and Booster Pumping Station: The recently installed Legacy Lane pipeline will be extended northwest, towards Lookout Hill through the installation of a new 12-in pipeline which is proposed to follow Lone Pine Drive then up Lookout Hill to the existing tank site (along the existing roadway). This new pipeline (approximately 2,800 ft, PVC), in conjunction with other 12-inch pipelines shown in Figure 15 will be used to convey recycled water to the new Lookout Hill Tank shown in Figure 16. A new booster pumping station is needed to deliver recycled water to Stonehouse and Escuela Parks, the Main Northgate and in the future Residences of Murieta Hills from the tank. This new pumping station is proposed to be located near the base of Lookout Hill along Highway 16 near the District's Main Lift North and proposed to house two new booster pumps.
- c. **Interconnecting Piping Between Booster Pump Station and Existing Forcemain:** A new transmission forcemain (approximately 2,400 ft, PVC) will be installed to connect the new Booster Pumping Station to the existing Stonehouse 12-inch sewer forcemain near the Main Lift North Station site. The proposed alignment of this new pipeline between Lone Pine Drive and the North Main Lift Station is between the hillside and the existing CIA Ditch.



Proposed North Main Gate Conversion



Proposed Stonehouse and Escuela Park Conversions



Proposed District Headquarters Conversion

Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, i-cubed, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

# Legend

- Recycled Water Transmission Main
- Proposed Recycled Water Service Line (4 inch)
- Proposed Recycled Water Irrigation Connection\*

\*Circle represents:

To be designed and constructed per RMCSD Recycled Water Standards



Figure 14: Irrigation System Conversions to Recycled Water



Figure 15. Recommended Phase 1 and Buildout Recycled Water Conveyance System Improvements



Figure 16

d. **Existing Stonehouse 12-inch Forcemain:** The existing 12-inch forcemain (5,400 ft abandoned sewer forcemain, not in use) that parallels Stonehouse Road and crosses under Highway 16 will be used for recycled water conveyance. It is anticipated that installation and operation of the new chemical feed system will avoid further corrosion. As described in the Stonehouse 12-inch Sewer Forcemain Condition Assessment report, the addition of a corrosion inhibitor, coupled with monitoring, is anticipated to extend the estimated remaining useful life to about 25 years.

# 3.2.2: Lookout Hill Water Storage Tank

Recycled water storage is required to supplement production capacities and satisfy peak irrigation demands. At this time, it is recommended that a total capacity of 200,000 gallons be provided to satisfy Phase 1 demands. System optimization should be performed using the updated hydraulic model (or something similar) to minimize cost of ownership during detailed design. Clear and specific objectives (e.g., reduce storage tank, operating and/or net present costs) and scenarios (e.g., Buildout, Phase 1, etc.) should be identified, defined and documented prior to initiating hydraulic modeling work.

The existing tank located near the top of Lookout Hill will be demolished and a new tank made of bolted panels with powder coated finish will be erected in its place or next to the existing tank. The external dimensions of this tank are approximately 40 foot diameter and 26 feet side wall height (see Figure 16). A booster pumping station will be located near the base of Lookout Hill to (1) provide adequate pressure to serve Stonehouse and Escuela Parks and Residences of Murieta Hills, in the future, and (2) maintain pressure above a minimum set point (e.g., 40 psi) when recycled water is only being supplied to the golf courses.

## 3.2.3: Escuela Park Conversion

The irrigation system for Escuela Park will be disconnected at the Point of Service and reconnected to the Northwest Recycled Water Transmission Main for recycled water irrigation supply (see Figure 14). It is assumed that the RMA, or other agency responsible for Escuela Park irrigation and management, will work with the District and submit an Application for Recycled Water Permit and Recycled Water Plan for review, consideration of approval and recycled water service in accordance with the District's Recycled Water Standards. As described in the District's Standards, the Recycled Water Plan shall describe how the proposed system is consistent with District Standards. It has also been assumed that RMA will relocate the Point of Service for recycled water irrigation to that shown in Figure 14 and make improvements necessary to improve their system and comply with recycled water requirements.

Cross connection testing is to be conducted prior to service to verify that only the irrigation system is receiving recycled water and to ensure that any potable water facilities within the proposed reuse area are not connected to the recycled water system. Costs for this conversion are based on installing a portion (up to 200 ft) of the new 4-in PVC pipeline shown in Figure 14 for Stonehouse and Escuela Parks. It is assumed that this pipeline will be supplied by the common 4-inch pipeline located in Escuela Drive and described below in Stonehouse Park Conversion.

# 3.2.4: Stonehouse Park Conversion

The existing Stonehouse Park potable water irrigation service will be disconnected at the Point of Service and connected to the Northwest Recycled Water Transmission Main for recycled water irrigation supply (see Figure 14). It is assumed that the RMA, or other agency responsible for Stonehouse Park irrigation and management, will work with the District and submit an Application for Recycled Water Permit and Recycled Water Plan for review, approval and recycled water service in accordance with the District's Recycled Water Standards. As described in the District's Standards, the Recycled Water Plan shall describe how the proposed system is consistent with District Standards. Specific items of relevance to this proposed reuse area include protection of public health through (a) separate and continued potable water service to applicable buildings, structures, etc. (e.g., faucets, urinals, toilets, etc.) and (b) adequate setback for picnic tables, drinking fountains, etc. It has also been assumed that RMA will relocate the Point of Service for recycled water irrigation to that shown in Figure 14 and will make the improvements necessary to improve their system and comply with recycled water requirements.

Cross connection testing will also be required to verify that the irrigation system is only receiving recycled water and to ensure that the potable water system is not connected to the recycled water system. Approximately 275 ft of new 4-in PVC pipeline has been included in the cost estimate for this conversion. This pipe length assumes that the 4-inch recycled water pipeline is routed from Stonehouse Road along Escuela Drive and into Stonehouse Park as indicated in Figure 14.

## 3.2.5: Main Northgate Conversion

The existing irrigation system for the North Maingate will be disconnected from the potable water system and reconnected to the Northwest Recycled Water Transmission Main (see Figure 14). It is assumed that the RMA, or other agency responsible for irrigation and management at this particular location, will work with the District and submit an Application for Recycled Water Permit and Recycled Water Plan for review, approval and recycled water service in accordance with the District's Recycled Water Standards. As described in the District's Standards, the Recycled Water Plan shall describe how the proposed system is consistent with District Standards. Specific items of relevance to this proposed reuse area include protection of public health by (a) ensuring that storm drains, basins, etc. are located outside of the reuse area and (b) that overspray, runoff, etc. does not have the ability to enter surface water bodies. It has also been assumed that RMA will relocate the Point of Service for recycled water irrigation to that shown in Figure 14 and make other improvements, if necessary, to improve their system and comply with recycled water requirements.

Cross connection tests will be used to verify that only the irrigation system is receiving recycled water and to ensure that potable water facilities are not connected to the recycled water system. Up to 200 ft of new 4-in PVC pipeline and associated appurtenances has been allocated for this effort.

## 3.2.6: Murieta Gardens

Recycled water infrastructure and irrigations systems to serve the Murieta Gardens development is to be proposed by the developer and submitted to the District in a Recycled Water Plan for review and comment as described in the District's Recycled Water Standards (Section 1.3.4). Specific design requirements, components and elements will be identified as part of the Murieta Gardens Recycled Water Plan review and approval process and are not described in this PDR.

## 3.2.7: The Retreats

Recycled water infrastructure and irrigations systems to serve The Retreats development is to be proposed by the developer and submitted to the District in a Recycled Water Plan for review and comment as described in the District's Recycled Water Standards (Section 1.3.4). Specific design requirements, components and elements will be identified as part of The Retreats Recycled Water Plan review and approval process and are not described in this PDR.

## 3.3: Recommended Buildout Improvements

The following are descriptions of the recommended improvements to accommodate Buildout.

## 3.3.1: Disinfection Facilities Upgrade

Currently, the disinfection facilities have a rated capacity of 2.3 MGD and consist of an existing chlorine contact basin (CCB) and chlorine contact pipe (CCP). The CCP will be removed and an additional chlorine contact chamber will be added to increase disinfection facilities capacity from 2.3 to 3.0 MGD. The proposed chlorine contact chamber is shown in Figure 13.

As described in *WWRP Modified Chlorine Contact Disinfection System Compliance Report* (HSe, July 2006), the CCB was tested in 2003 for actual modal contact time at a flow of 1 and 3 MGD. The estimated modal contact time through the CCB at 3 MGD is 27 minutes. In accordance with Title 22, *disinfected tertiary recycled water* requires a minimum 90 minute modal contact time, therefore the proposed chlorine contact chamber is to have minimum modal contact time of 63 minutes.

A new concrete chlorine contact chamber is proposed to be installed next to the existing equalization basin at the WWRP to increase disinfection capacity. A 90 percent efficiency (e.g., baffling factor) was assumed for sizing of the new contact chamber. The new chlorine contact chamber will provide approximately 146,610 gallons for additional disinfection contact time and will consist of three passes following a serpentine configuration. The proposed chamber dimensions are 280 ft long, 7 ft wide and 10 ft deep,<sup>17</sup> which equate to a length to width to depth ratio of 40:1:1.4, which is close to the target length to width to depth ratio of 40:1:1.5.

The water surface elevation of the new chlorine contact chamber will approximately match the elevation of the existing chlorine contact basin. The water surface elevation immediately downstream of the new chlorine contact chamber will approximately match the elevation of the existing equalization basin.

This improvement also includes the removal and disposal of the existing 20-inch CCP located inside the equalization basin.

Replacement of the third Tertiary Pump Station feed pump to the dissolved air flotation (DAF) units (\$100,000 allocation indicated in Table 13) is also required to increase WWRP production capacity from 2.3 to 3.0 MGD.

## 3.3.2: Existing North Golf Course Conveyance System Rehabilitation

The 12- and 8-inch conveyance pipelines that serves the North Golf Course represents the backbone of the existing recycled water system and are proposed to convey recycled water to additional reuse areas in the future (see Figure 15). Both ACP pipelines have been in service for over 30 years. It is necessary to conduct a condition assessment of these conveyance system assets to determine rehabilitation needs and ensure future performance and continued, uninterrupted service. Condition assessment is recommended to be conducted in two phases. Phase 1 would focus on the existing 12-inch ACP pipeline from WWRP to Yellow Bridge while Phase 2 focused on the existing 8-inch ACP Pipeline to Bass Lake. Although these improvements have been designated as Buildout, the District should conduct assessments as soon as possible to better understand their condition and plan accordingly.

ACP was widely used for water pipelines from the 1940's through the 1960's. ACP was popular due to its light weight, rigidity and ease of handling and installation, low coefficient of friction, and corrosion resistant properties. However, in the early 1970's the installation of ACP ceased due to

<sup>&</sup>lt;sup>17</sup> Dimensions do not include thickness of contact chamber walls.

health concerns associated with the manufacturing process. In 1973, the United States Environmental Protection Agency (EPA) implemented the National Emissions Standards for Hazardous Air Pollutants (NESHAP), which determined that asbestos was a leading contributor to asbestosis and certain forms of cancer.

In 1991, EPA determined that any location where activities such as cutting, crushing/removing, and disposing of ACP are considered active waste disposal sites and therefore, subject to the requirements and regulations under NESHAP. However, NESHAP does include an exclusion that allows the exposure of up to 260 linear feet of ACP at one time.

Most ACP either has or is reaching the end of what is considered a typical 50 to 70 year useful life for pipelines. Many water industries have found that ACP is failing at a relatively high rate, and are trying to identify feasible and economic ways to replace and/or rehabilitate ACP. Several options for replacing and rehabilitating existing ACP include the following:

- Removal by excavating and bagging the existing ACP for disposal, and installation of a new pipe in the same trench.
- Abandonment of existing ACP in place and installation of a new pipe in parallel or alternative location using open cut construction (also known as by-passing).
- Pipe lining which for the smaller diameter pipelines (6 to 12-inch) would be curing-in-place pipe lining (CIPP). CIPP is the installation of a resin saturated fabric tube that is placed inside the AC pipe and inflated with air or more typically hot water until the resin saturated fabric hardens and creates an interior pipe lining.
- Pipe bursting, which involves pulling or pushing of existing ACP into the surrounding soils through the use of static, pneumatic, or hydraulic equipment that breaks the host pipe.
- Pipe reaming, which uses horizontal directional drilling equipment to grind the ACP into smaller fragments and then pumps drilling fluid into the borehole to flush the smaller fragments into a downstream collection pit for disposal.

NESHAP requires that notification be provided for all of the AC pipe removal and rehabilitation options described above.

# 3.3.3: Bass Lake Recycled Water Storage Tanks:

Recycled water storage is required to supplement recycled water production capacities needed to satisfy projected Buildout peak irrigation demands. At this time, it has been recommended that a total capacity of 500,000 gallons be provided to satisfy Buildout demands.

## 3.3.4: Seasonal Storage Reservoir

A minimum of 150 AF of additional seasonal storage for secondary treated effluent is required to accommodate future development through Buildout. This addition could easily be met through expansion of the existing reservoir. Review of the existing ponds and levee system indicate the potential for cost effective expansion. Seasonal storage reservoir cost estimates presented in this PDR are based upon increasing the capacity of the existing storage reservoirs to 900 AF.

# 3.3.5: Van Vleck Sprayfield No. 4

Additional effluent disposal capacity will be required to accommodate above average levels of precipitation. As described in Table 13, additional recycled water transmission, distribution and irrigation system improvements are proposed into order increase sprayfield capacity on an additional 30 acres to accommodate wet weather scenarios for future growth.

#### 3.3.6: Villages A, B, and C Developments

Recycled water infrastructure and irrigations systems to serve Villages A, B and C developments are to be proposed by the developers and submitted to the District in Recycled Water Plans for review and comment as described in the District's Recycled Water Standards (Section 1.3.4). Specific design requirements, components and elements will be identified as part of the review and approval process and are not described in this PDR.

# Section 4: Project Implementation

This section presents the proposed construction sequencing and project scheduling. An estimate of probable construction costs is also included, along with a preliminary table of contents for the Phase 1 Recycled Water Improvements Project specifications and list of drawings.

#### 4.1: Construction Sequencing

The sequence of construction for the majority of the Phase 1 Recycled Water Improvements Project is expected to be relatively straightforward provided that the following tie-ins / connections into existing recycled water infrastructure are conducted during the wet season, when recycled water production and conveyance system are not in operation (typically between October 15 through April). If designed, planned and coordinated properly, each of these tie-ins are expected to be relatively short in duration and can be scheduled during the wet season.

- WWRP Improvements (Wet Season Tie-Ins and Critical Activities)
  - Recycled Water Pumping Station
    - Rehabilitation.
    - Tie into <u>existing</u> Equalization Basin at WWRP.
    - Tie into <u>existing</u> 12-inch ACP North Golf Course Conveyance pipeline at WWRP.
  - Tie in (2) into <u>existing</u> District Headquarters irrigation system and conduct crossconnection testing.
- Northwest Recycled Water Transmission Main (Wet Season Tie Ins and Critical Activities)
  - New Highway 16 undercrossing pipeline tie ins (2) to <u>existing</u> 12-inch ACP North Golf Course Pipeline and recently installed 12-inch Legacy Lane pipeline.
  - New 12-inch Lone Pine Drive / Murieta Drive pipeline tie in to recently installed 12-inch Legacy Lane pipeline.
  - New 12-inch Lone Pine Drive / Murieta Drive pipeline tie in to new Lookout Hill Recycled Water Storage Tank.
  - New 12-inch Lone Pine Drive / Murieta Drive pipeline tie in to new Recycled Water Booster Pump Station.
  - New 12-inch recycled water pipeline tie in to abandoned 12-inch Forcemain.
  - Existing Stonehouse 12-inch Forcemain tie ins (3) to <u>existing</u> Escuela and Stonehouse Park and Main North Gate Entrance irrigation systems.
- Reuse Areas Conversions
  - Existing Main Northgate Irrigation System Modifications
  - Existing District Headquarters Irrigation System Modifications
  - Existing Escuela Park Irrigation System Modifications
  - Existing Stonehouse Park Irrigation System Modifications

## 4.2: Project Implementation Schedule

A project implementation schedule for Phase 1 Recycled Water Improvements Project is presented in Figure 17. The proposed schedule is based on anticipated timelines for completion of major tasks and activities required for implementation and <u>not</u> on meeting a specific timeline or deadline. The implementation schedule indicates that the Phase 1 recycled water system could be initiated for service mid-2019 and that the Phase 1 improvements are estimate to require about 30 months to complete once this PDR has been finalized. This timeline, which should be verified with an environmental consultant, assumes a maximum 6-month timeline for environment consultation and review.



Figure 17. Proposed Phase 1 Implementation Schedule

Buildout improvements are anticipated to require approximately 3 years for completion of all major activities such as preliminary design, environmental review, detailed design, construction, startup and testing and close out. Similar to what is illustrated in Figure 17, it is recommended that future Buildout reuse areas obtain District approval no less than 12 months before system startup. Cross connection testing should be conducted just before startup of the Buildout system startup.

The rated ADWF capacity of the existing seasonal storage reservoirs has been established at 0.65 MGD in the WDR. Review of Figure 6 indicates that the ADWF is projected to approach 0.65 MGD around 2023. The District should initiate the expansion of the seasonal storage reservoir no later than January 2020 based on this development schedule. A construction sequencing plan should be established early in the project to determine the best and most cost effective means for increasing the height of the existing secondary storage reservoir berms while maintaining the District's ability to continuously operate and store secondary effluent.

## 4.3: Construction Documents

A preliminary list of drawings is shown in Table 15 following by a preliminary list of specifications in Table 16. for the Phase 1 Recycled Water Improvements Project Improvements.

| Drawing |            |                                                                     |
|---------|------------|---------------------------------------------------------------------|
| No.     | Discipline | Drawing Title                                                       |
| 1       | General    | Title Sheet, Vicinity Map and Drawing List                          |
| 2       |            | General Notes and Abbreviations                                     |
| 3       |            | Mechanical Legend, Schedules and Notes                              |
| 4       |            | Electrical Legend, Schedules and Notes                              |
|         | 1          | Recycled Water SCADA Control System                                 |
| 5       |            | P&ID 1                                                              |
| 6       |            | P&ID 2                                                              |
| 7       |            | P&ID 3                                                              |
| 8       |            | PLC                                                                 |
|         | 2          | Equalization Basin Potable Water Air Gap Connection                 |
| 9       |            | Civil Plan and Profile                                              |
| 10      |            | Civil Detail                                                        |
|         | 3          | Recycled Water Pump Station                                         |
| 11      |            | Civil - Site Plan                                                   |
| 12      |            | Civil Discharge Piping                                              |
| 13      |            | Mechanical - Recycled Water Booster Pump Station                    |
| 14      |            | Mechanical - Details                                                |
| 15      |            | Electrical - Power, Control, and Instrumentation                    |
|         | _          | District Headquarters Conversion - Recycled Water Irrigation System |
|         | 4          | Connection                                                          |
| 16      |            | Civil - Site Plan                                                   |
| 17      |            | Civil - Details                                                     |
|         | 5          | Northwest Recycled Water Transmission Main                          |
| 18      |            | Civil - Plan and Profile 1                                          |
| 19      |            | Civil - Plan and Profile 2                                          |
| 20      |            | Civil - Plan and Profile 3                                          |

 Table 15.
 Preliminary List of Drawings – Phase 1 Recycled Water

| Discipline | Drawing Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Discipline | Civil - Plan and Profile 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            | Civil - Plan and Profile 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            | Civil - Plan and Profile 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            | Civil - Plan and Profile 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            | Civil - Plan and Profile 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            | Civil - Plan and Profile 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            | Civil - Plan and Profile 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|            | Civil - Plan and Profile 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|            | Civil - Plan and Profile 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|            | Civil - Plan and Profile 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|            | Civil - Plan and Profile 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|            | Civil - Details 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|            | Civil - Details 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|            | Civil - Details 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 6          | Recycled Water Booster Pumping Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|            | Civil - Site Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|            | Civil Discharge Piping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|            | Mechanical - Lookout Hill Booster Pump Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            | Mechanical - Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|            | Electrical - Power, Control, and Instrumentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 7          | Escuela Park Conversion - Recycled Water Irrigation System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| /          | Civil Site Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|            | Stonehouse Park Conversion - Recycled Water Irrigation System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 8          | Connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            | Civil - Site Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|            | Civil - Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 9          | Lookout Hill Recycled Water Storage Tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|            | Civil - Site Piping Detail Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|            | Civil - Storage Tank Plan and Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|            | Civil - Storage Tank Details 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            | Civil - Storage Tank Details 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            | Mechanical - Storage Tank Details 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|            | Mechanical - Storage Tank Details 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 10         | Main North Gain Entrance Conversion - Recycled Water Irrigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 10         | Civil - Site Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 1          | Civil - Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|            | Discipline |  |

| Spec. No.            | Description                                                                |
|----------------------|----------------------------------------------------------------------------|
| <b>Bidding Requi</b> | irements                                                                   |
| 00010                | Invitation to Bid                                                          |
| 00100                | Instructions to Bidders                                                    |
| 00200                | Information Available to Bidders                                           |
| 00300                | Bid Form                                                                   |
| 00410                | Bid Security                                                               |
| 00414                | Security for Compensation Certificate – California Requirement             |
| 00416                | Bidder's References                                                        |
| 00420                | Bidder's Qualifications                                                    |
| 00430                | Subcontractor List                                                         |
| 00480                | Noncollusion Affidavit – California Requirement                            |
| <b>Contract Form</b> | 15                                                                         |
| 00500                | Agreement                                                                  |
| 00610                | Performance Bond – California Version                                      |
| 00620                | Payment Bond – California Version                                          |
| <b>Contract</b> Cond | litions                                                                    |
| 00700                | General Conditions – Pre-defined Standard                                  |
| 00800                | Supplementary Conditions – California Version                              |
| Division 1 - G       | eneral Requirements                                                        |
| 01010                | Summary of the Work and Contract Considerations                            |
| 01040                | Coordination and Project Requirements                                      |
| 01140CA3             | Environmental Protection                                                   |
| 001300               | Submittals                                                                 |
| 01500                | Construction Facilities and Temporary Controls                             |
| 01550                | Traffic Regulation                                                         |
| 01650                | Facility Startup                                                           |
| 01700                | Contract Closeout                                                          |
| Division 2 – Si      | te Work                                                                    |
| 02050                | Demolition                                                                 |
| 02200                | Site Preparation                                                           |
| 02302                | Earthwork – For Pipelines                                                  |
| 02370                | Slope Protection                                                           |
| 02700                | Paving and Surfacing                                                       |
| 02775                | Concrete Curb, Gutters and Sidewalks                                       |
| 02820                | Fences and Gates                                                           |
| 02905                | Landscape Planting and Irrigation                                          |
| Division 3 – Co      | oncrete                                                                    |
| 03200                | Reinforcing Steel                                                          |
| 03300                | Cast-In-Place Concrete                                                     |
| Division 5 – M       | letals                                                                     |
| 05722                | Aluminum Handrails, Guardrails and Related Items                           |
| Division 9 – Fi      | nishes                                                                     |
| 09900                | Painting                                                                   |
| 09960                | High Performance Coatings                                                  |
| 09960A               | Appendix A: Standards and References and Mandatory Quality Control Testing |
| 009960B              | Appendix B: Coating Detail Sheets, High Performance Coatings               |
| Division 11 -        | Equipment                                                                  |
| 11215                | Vertical Turbine Pumps                                                     |
| Division 13 - 3      | Special Construction                                                       |
| 13212                | Bolted Steel Tank                                                          |

 Table 16.
 Preliminary List of Specifications – Phase 1 Recycled Water Improvements

| Spec. No.     | Description                                                                          |  |  |  |  |  |
|---------------|--------------------------------------------------------------------------------------|--|--|--|--|--|
| Division 15 - | Mechanical                                                                           |  |  |  |  |  |
| 15050         | Pining Valves and Accessories                                                        |  |  |  |  |  |
| Division 16 - | Floctrical                                                                           |  |  |  |  |  |
| 16000         | Electrical Work                                                                      |  |  |  |  |  |
| 16010         | Conoral Electrical Poquiroments                                                      |  |  |  |  |  |
| 16110         | Conduit Decouver and Fittings                                                        |  |  |  |  |  |
| 16120         | Low Voltage Wire and Cable                                                           |  |  |  |  |  |
| 16120         | Low Voltage Wile and Cable                                                           |  |  |  |  |  |
| 10122         | Gine Cable                                                                           |  |  |  |  |  |
| 16124         | Signal Cable                                                                         |  |  |  |  |  |
| 16130         | Boxes<br>Wirring Devices                                                             |  |  |  |  |  |
| 16140         | Wiring Devices                                                                       |  |  |  |  |  |
| 16155         | Motor Starters                                                                       |  |  |  |  |  |
| 16160         | Panelboards                                                                          |  |  |  |  |  |
| 16165         | Load Centers                                                                         |  |  |  |  |  |
| 16180         | Protective Devices and Switches                                                      |  |  |  |  |  |
| 16205         | Standby Diesel Engine-Generator Sets                                                 |  |  |  |  |  |
| 16250         | Automatic and Non-Automatic Transfer Switches                                        |  |  |  |  |  |
| 16325         | Step Voltage Regulator                                                               |  |  |  |  |  |
| 16330         | Capacitor Switchgear                                                                 |  |  |  |  |  |
| 16401         | Overhead Electrical Work                                                             |  |  |  |  |  |
| 16402         | Underground Electrical Service System                                                |  |  |  |  |  |
| 16405         | Switchboards                                                                         |  |  |  |  |  |
| 16406         | Medium Voltage Switchgear                                                            |  |  |  |  |  |
| 16450         | Electrical Grounding                                                                 |  |  |  |  |  |
| 16520         | Exterior Lighting                                                                    |  |  |  |  |  |
| 16611         | Uninterruptible Power Supply (UPS)                                                   |  |  |  |  |  |
| 16613         | Regulated Power Supplies                                                             |  |  |  |  |  |
| 16615         | Power Distribution Units                                                             |  |  |  |  |  |
| 16760         | Plant Communications Systems                                                         |  |  |  |  |  |
| 16762         | Telephone and Paging Systems                                                         |  |  |  |  |  |
| 16800         | Modifications to Existing Facilities                                                 |  |  |  |  |  |
| 16890         | Electric Heaters                                                                     |  |  |  |  |  |
| 16920         | Motor Control Center(s)                                                              |  |  |  |  |  |
| 16923         | Slip Energy Recovery Drives (SER)                                                    |  |  |  |  |  |
| 16929         | Medium Voltage Motor Starter(s)                                                      |  |  |  |  |  |
| 16930         | Power Factor Control Equipment                                                       |  |  |  |  |  |
| 16945         | Contactors/Remote Control Relays                                                     |  |  |  |  |  |
| 16955         | Control Devices                                                                      |  |  |  |  |  |
| 16999         | Intrinsically Safe Systems                                                           |  |  |  |  |  |
| Division 17 – | Instrumentation and Controls                                                         |  |  |  |  |  |
| 17010         | Instrumentation and Controls, General Requirements                                   |  |  |  |  |  |
| 17010.1       | Figure 1 - Loop Diagram                                                              |  |  |  |  |  |
| 17010.2       | Figures 2 (Interconnection Diagram), 3 (Elementary Diagram), and 4 (Equipment Wiring |  |  |  |  |  |
|               | Diagrams)                                                                            |  |  |  |  |  |
| 17015         | Operational Availability Demonstration                                               |  |  |  |  |  |
| 17018         | Performance (Availability) Warranty                                                  |  |  |  |  |  |
| 17110         | Analytical Instruments                                                               |  |  |  |  |  |
| 17120         | Flow Measurement                                                                     |  |  |  |  |  |
| 17140         | Level Measurement                                                                    |  |  |  |  |  |
| 17150         | Pressure Measurement                                                                 |  |  |  |  |  |
| 17200         | Panel Mounted and Miscellaneous Field Instruments                                    |  |  |  |  |  |
| 17320         | Process Control System                                                               |  |  |  |  |  |

| Spec. No. | Description                                              |
|-----------|----------------------------------------------------------|
| 17321     | Microcomputer Based SCADA System                         |
| 17330     | Programmable Logic Controller                            |
| 17330.1   | Appendix - PLC Process Control Strategies                |
| 17335     | Process Control Unit                                     |
| 17340     | Data Acquisition and Logging System                      |
| 17341     | Data Acquisition and Logging System - Microcomputer Type |
| 17421     | Tone Telemetry System                                    |
| 17423     | Remote Telemetry Units                                   |
| 17425     | Radio Telemetry System                                   |
| 17430     | Intelligent Multiplexing System                          |
| 17510     | Panels                                                   |

#### 4.4: Estimate of Probable Construction Cost

The estimated probable construction and project costs for the recommended Phase 1 improvements are \$3,740,000 and \$4,960,000, respectively as shown in Table 17. Estimated buildout construction and project costs are \$7,990,000 and \$10,590,000, respectively. A detailed breakdown of these cost estimates are included in the Appendix.

As shown at the bottom of Table 17, Recycled Water Program costs are estimated to be about \$6,395 per equivalent residential home. The following is a listing of current connection fees for other nearby and/or similar agencies for comparison purposes:

- Sacramento Regional CSD:
- \$3,358 infill; \$5,523 new areas
- City of Roseville:
- \$7,802
- Calaveras County Water District: \$5,500-\$17,293 depending on service area

| Table 17. | Recommended | Recycled V | Nater Im | provements | and Estimated Cost | S |
|-----------|-------------|------------|----------|------------|--------------------|---|
|           |             | 2          |          |            |                    |   |

| No.                                  | Improvement                                             | Estimated Cost (\$) <sup>a</sup> |  |  |  |
|--------------------------------------|---------------------------------------------------------|----------------------------------|--|--|--|
| Phase 1 Recycled Water Improvements  |                                                         |                                  |  |  |  |
| 1                                    | Recycled Water SCADA Control System                     | 250,000                          |  |  |  |
| 2                                    | Equalization Basin Potable Water Air Gap                | 76,000                           |  |  |  |
| 3                                    | Recycled Water Pumping Station                          | 1,165,000                        |  |  |  |
| 4                                    | District Headquarters Conversion                        | 20,000                           |  |  |  |
| 5                                    | Northwest Recycled Water Transmission Main              | 1,006,000                        |  |  |  |
| 6                                    | Lookout Hill Booster Pumping Station                    | 612,000                          |  |  |  |
| 7 Escuela Park Conversion            |                                                         | 16,000                           |  |  |  |
| 8                                    | Stonehouse Park Conversion                              | 36,000                           |  |  |  |
| 9                                    | Lookout Hill Recycled Water Storage Tank                | 545,000                          |  |  |  |
| 10                                   | Main Northgate Conversion                               | 18,000                           |  |  |  |
| 11                                   | Commercial Loop Conversion                              | па                               |  |  |  |
|                                      | Phase 1 Subtotal (Estimated Construction Cost)          | 3,740,000                        |  |  |  |
| 12                                   | Soft Costs – 32.5% (Admin., Reg., Eng., Construct Man.) | 1,215,500                        |  |  |  |
|                                      | Phase 1 Total (Project Cost)                            | 4,960,000                        |  |  |  |
| Buildout Recycled Water Improvements |                                                         |                                  |  |  |  |
| 13                                   | SCADA Upgrades                                          | 82,000                           |  |  |  |
| 14                                   | Disinfection Facilities Upgrade                         | 665,000                          |  |  |  |
| 15                                   | North Golf Course Conveyance System                     | 1,620,000                        |  |  |  |
| 16                                   | Bass Lake Tank                                          | 1,216,000                        |  |  |  |
| 17                                   | Bass Lake Booster Pumping Station                       | 625,000                          |  |  |  |
| 18                                   | Seasonal Storage Reservoir Expansion                    | 3,407,000                        |  |  |  |

| No.                                              | Improvement                                             | Estimated Cost (\$) <sup>a</sup> |  |  |
|--------------------------------------------------|---------------------------------------------------------|----------------------------------|--|--|
| 19                                               | Van Vleck Sprayfield 4                                  | 270,000                          |  |  |
| 20                                               | DAF Pumping Replacement                                 | 100,000                          |  |  |
|                                                  | Buildout Subtotal (Estimated Construction Cost)         | 7,990,000                        |  |  |
| 21                                               | Soft Costs – 32.5% (Admin., Reg., Eng., Construct Man.) | 2,600,000                        |  |  |
|                                                  | Buildout Total (Project Cost)                           | 10,590,000                       |  |  |
| Phase 1 and Buildout Recycled Water Improvements |                                                         |                                  |  |  |
|                                                  | Grand Total (Phase 1 and Buildout)                      | 15,600,000                       |  |  |
|                                                  | Estimated Number of New Equivalent Residential Units    | 2,440                            |  |  |
|                                                  | Estimated Cost per Connection (\$/ERU)                  | \$6,395                          |  |  |

<sup>a</sup> Estimated costs based upon Engineering News Record (ENR) 20 City Average Construction Cost Index (CCI) at 10,385 (August 2016)

na Data not available to make this determination
<u>Appendix</u>

## KENNEDY/JENKS CONSULTANTS

## **OPINION OF PROBABLE CONSTRUCTION COST**

#### **BASIS OF ESTIMATE**

#### **PROJECT INFORMATION**

| Client:                              | Rancho Murrieta              |
|--------------------------------------|------------------------------|
| Project:                             | <b>Recycled Water System</b> |
| KJ Job No.:                          | 1670011*00                   |
| Estimate Date:                       | 12/2/2016                    |
| Prepared By:                         | JLH                          |
| Reviewed By:                         | KAK                          |
| Estimate Type:                       | Preliminary                  |
| <b>AACEI Estimate Classification</b> | Class 4                      |
| PROJECT DESCRIPTION:                 |                              |

The scope of work for this project includes: Recycled Water System components including water storage tanks, pump stations, new recycled water conveyance, connections to convert existing irrigation systems to recycled water use, and control features as described in the report.

#### **ESTIMATE DOCUMENTS:**

DRAWINGS: N/A DOCUMENTS: Predesign Report & Figures

#### SOURCE OF COST DATA:

Published cost estimating data, engineers experience on similar projects.

#### **ESTIMATE ASSUMPTIONS:**

The followings assumptions were made in the preparation of this estimate:

Project will be publicly bid project.

Native backfill will be suitable for use in utility trenches.

No significant dewatering of groundwater in excavation will be required.

Additional detail of assumed items is included in detailed estimate breakdown.

## SPECIFIC INCLUSIONS:

Soft costs have been included with the following percentages allocations: Administration (5%), Regulatory/ CEQA Compliance(2.5%), Engineering & Construction Management (15%), Soft Cost Contingency (10%)

#### SPECIFIC EXCLUSIONS:

The estimate does not include the following: Asbestos / Lead abatement. Hazardous or Special Waste removal or disposal Soil remediation

#### MAJOR CHANGES FROM PREVIOUS ESTIMATE:

#### **DESIGN CONTINGENCY:**

A design contingency of 30 % has been included.

Note: This allowance is intended to provide a Design Contingency allowance. It is not intended to provide for a Construction Contingency for change orders during construction or to cover unforeseen conditions.

#### **ESCALATION:**

An escalation factor has not been included. The owner is cautioned that the project cost should be adjusted for the project schedule.

| Current ENR CCI                      | Aug-16 | 10385 |                  |
|--------------------------------------|--------|-------|------------------|
| Annual Inflation Escalation Factor:  |        | 3.0%  |                  |
| Time Until Project Midpoint (Months) |        |       | Number of months |

#### ACCURACY:

The level of accuracy is commensurate with levels developed by the AACEI, the Association for the Advancement of Cost Engineering International. At increasing levels of design completion, the narrower the range between upper and lower limits and the greater the accuracy of the estimate. This estimate is considered a Class 4 level estimate in accordance with AACEI guidelines. Typically this level of estimate has an expected accuracy range of +50%, -30%. This estimate is based upon competitive bidding, which assumes receipt of multiple bids from five or more General Contractors. Without competitive bidding, pricing can vary significantly from the prices assumed in this estimate.

The enclosed Engineer's Estimate of Probable Construction Cost is only an opinion of possible items that maybe considered for budgeting purposes. This Project Estimate is limited to the conditions existing at issuance and is not a guaranty of actual construction cost or schedule. Uncertain market conditions such as, but not limited to, local labor or contractor availability, wages, other work, material market fluctuations, price escalations, force majeure events and developing bidding conditions, etc. may affect the accuracy of this review. Kennedy/Jenks is not responsible for any variance from this Project Estimate or actual prices and conditions obtained.

#### **OTHER COMMENTS:**

## **KENNEDY/JENKS CONSULTANTS**

| Project:        | Rancho Murrieta | Prepared By:   | JLH/KAK    |
|-----------------|-----------------|----------------|------------|
|                 |                 | Date Prepared: | 14-Jun-17  |
| Building, Area: | Recycled Water  | K/J Proj. No.: | 1670011*00 |

Estimate Type: Preliminary

#### SUMMARY BY AREA

| ITEM NO.  | ITEM DESCRIPTION                                                  | TOTAL     |
|-----------|-------------------------------------------------------------------|-----------|
| Phase 1   |                                                                   |           |
| 1         | Recycled Water SCADA Control System                               | 250,000   |
| 2         | Equalization Basin Potable Water Air Gap connection               | 76,000    |
| 3         | Recycled Water Pumping Station                                    | 1,165,000 |
| 4         | District Headquarters Conversion Irrigation Connection            | 20,000    |
| 5         | NW Recycled Water Transmission Main                               | 1,006,000 |
| 6         | Lookout Hill Booster Pumping Station                              | 612,000   |
| 7         | Escuela Park Conversion - Recycled Water Irrigation Connection    | 16,000    |
| 8         | Stonehouse Park Conversion - Recycled Water Irrigation Connection | 36,000    |
| 9         | Lookout Hill Water StorageTank                                    | 545,000   |
| 10        | North Main Gate Conversion - Recycled Water Irrigation Connection | 18,000    |
|           | Phase 1 Subtotal                                                  | 3,740,000 |
|           | Soft Costs (Admin, Regulatory, Engineering, CM, Contingency) 33%  | 1,215,500 |
|           | Phase 1 Subtotal                                                  | 4,960,000 |
| Duild aut |                                                                   |           |
| Build out |                                                                   | 00.000    |
| 1B<br>14  | SCADA CONTROI System Bass Lake Tank Items                         | 82,000    |
| 10        | Disinfection Facilities Upgrade                                   | 665,000   |
| 12        | North Gon Course Conveyance System Renabilitation                 | 1,020,000 |
| 13        | Dass Lake Recyleu Water Storage Tarik                             | 1,216,000 |
| 14        | Dass Lake Dousler Pump Station                                    | 025,000   |
| 10        | Seasonal Slorage Reservior                                        | 3,407,000 |

| ITEM NO. | ITEM DESCRIPTION                                             |     | TOTAL      |
|----------|--------------------------------------------------------------|-----|------------|
| 16       | Van Vleck Sprayfield 4                                       |     | 270,000    |
| 17       | DAF Pump Replacement                                         |     | 100,000    |
|          | Buildout Subtotal                                            |     | 7,990,000  |
|          | Soft Costs (Admin, Regulatory, Engineering, CM, Contingency) | 33% | 2,600,000  |
|          | Phase 1 Subtotal                                             |     | 10,590,000 |
|          | TOTAL                                                        |     | 15,600,000 |

| Estimate | e Accuracy |
|----------|------------|
| +50%     | -30%       |

| 50%          | Total Est.   | -30%         |
|--------------|--------------|--------------|
| \$23,400,000 | \$15,600,000 | \$10,920,000 |

#### KENNEDY/JENKS CONSULTANTS Prepared By:

 Date Prepared:
 JLH

 K/J Proj. No.
 1670011\*00

Project: Rancho Murrieta

#### Building, Area: <u>Recycled Water SCADA Control System</u>

|           | Current at ENR             |                                                         |        |          |            |        |          |         |               |              |         |
|-----------|----------------------------|---------------------------------------------------------|--------|----------|------------|--------|----------|---------|---------------|--------------|---------|
| Estimate  | Туре                       | Conceptual                                              |        | Construe | ction      |        |          |         | Esca          | lated to ENR |         |
|           |                            | Preliminary (w/o plans)                                 |        | Change   | Order      |        |          | Months  | s to Midpoint | of Construct |         |
|           |                            | Design Development @                                    |        | _ % Comp | lete       |        |          |         |               |              |         |
| Spec.     | Item                       |                                                         |        |          | Mate       | rials  | Instal   | lation  | Sub-co        | ontractor    |         |
| No.       | No.                        | Description                                             | Qty    | Units    | \$/Unit    | Total  | \$/Unit  | Total   | \$/Unit       | Total        | Total   |
| Phase 1   |                            |                                                         |        |          |            |        |          |         |               |              |         |
|           |                            | PLC System at Lookout Hill Booster Pump Station         | 1      | EA       |            |        |          |         |               |              |         |
|           |                            | RTU/ Wireless I/O                                       | 2      | LOC      |            |        |          |         | 25,000        | 50,000       | 50,000  |
|           |                            | Control Valves and Control System Elements:             |        |          |            |        |          |         |               |              |         |
|           |                            | Recycled Water Pump Station Pressure Reducing Valve 12" | 1      | EA       | 12,000.00  | 12,000 | 500.00   | 500     |               |              | 12,500  |
|           |                            | Recycled Water Pump Station Flow Meter 12"              | 1      | EA       | 8,000.00   | 8,000  | 4,500.00 | 4,500   |               |              | 12,500  |
|           |                            | Recycled Water Pump Station Pressure Transmitter        | 1      | EA       | 3,500.00   | 3,500  | 4,500.00 | 4,500   |               |              | 8,000   |
|           |                            | Lookout Hill Flow Control Valve 12" Actuated Valve      | 1      | EA       | 4,500.00   | 4,500  | 4,500.00 | 4,500   |               |              | 9,000   |
|           |                            | Lookout Hill Tank Altitude Valve 12"                    | 1      | EA       | 13,400.00  | 13,400 | 500.00   | 500     |               |              | 13,900  |
|           |                            | Lookout Hill Booster Pump Station Pressure Transmitter  | 1      | EA       | 3,500.00   | 3,500  | 4,500.00 | 4,500   |               |              | 8,000   |
|           |                            | Power Drop / Meter at Actuated Valve at Branch          | 1      | EA       |            |        |          |         | 5,000         | 5,000        | 5,000   |
|           |                            | Power to Above Items                                    | 6      | EA       |            |        |          |         | 5,000         | 30,000       | 30,000  |
|           |                            |                                                         |        |          |            |        |          |         |               |              |         |
| Subtotals |                            |                                                         |        | 44,900   |            | 19,000 |          | 85,000  | 148,900       |              |         |
|           |                            | Division 1 Costs                                        | @      | 10%      | 4,490      |        | 1,900    |         | 8,500         | 14,890       |         |
|           |                            | Subtotals                                               |        |          | 49,390 20, |        | 20,900   |         | 93,500        | 163,790      |         |
|           |                            | Taxes - Materials Costs                                 | @      | 8.75%    |            | 4,322  |          |         |               |              | 4,322   |
|           |                            | Subtotals                                               |        |          |            | 53,712 |          | 20,900  |               | 93,500       | 168,112 |
|           |                            | Taxes - Labor Costs                                     | @      | 5.00%    |            |        |          | 1,045   |               |              | 1,045   |
|           |                            | Subtotals                                               |        |          |            | 53,712 |          | 21,945  |               | 93,500       | 169,157 |
|           |                            | Contractor Markup for Sub                               | @      | 12%      |            |        |          |         |               | 11,220       | 11,220  |
| Subtotals |                            |                                                         | 53,712 |          | 21,945     |        | 104,720  | 180,377 |               |              |         |
|           |                            | Contractor OH&P                                         | @      | 15%      |            | 8,057  |          | 3,292   |               |              | 11,348  |
| Subtotals |                            |                                                         |        | 61,768   |            | 25,237 |          | 104,720 | 191,725       |              |         |
|           | Estimate Contingency @ 30% |                                                         |        |          |            |        |          |         | 57,518        |              |         |
| Subtotals |                            |                                                         |        |          |            |        |          |         | 249,243       |              |         |
|           |                            | Escalate to Midpoint of Construct (per year)            | @      | 3%       |            |        |          |         |               |              | -       |
|           |                            | Estimated Bid Cost                                      |        |          |            |        |          |         |               |              | 249,243 |
|           |                            | Total Estimate                                          |        |          |            |        |          |         |               |              | 250,000 |
|           |                            |                                                         |        |          |            |        |          |         |               |              |         |

· · · ·

| Estimate | Accuracy |
|----------|----------|
| +50%     | -30%     |

| Estimated | Range of Pro | bable Cost |
|-----------|--------------|------------|
| +50%      | Total Est.   | -30%       |
| \$375,000 | \$250,000    | \$175,000  |

#### Project: Rancho Murrieta

Building, Area: Equalization Basin Potable Water Air Gap connection

KENNEDY/JENKS CONSULTANTS

 Prepared By:

 Date Prepared:
 JLH

 K/J Proj. No.
 1670011\*00

| Estimate Tyj | ype: Conceptual Construction |                                    |     |       |          | ruction Current at ENR |         |        |         |           |        |  |
|--------------|------------------------------|------------------------------------|-----|-------|----------|------------------------|---------|--------|---------|-----------|--------|--|
| Spec.        | Item                         |                                    |     |       | Mate     | rials                  | Instal  | lation | Sub-c   | ontractor |        |  |
| NO.          | NO.                          | Description                        | Qty | Units | \$/Unit  | l otal                 | \$/Unit | l otal | \$/Unit | l otal    | lotal  |  |
|              |                              | Tapped Connection to Existing Pipe | 1   | FA    | 1 475 00 | 1 475                  | 510.00  | 510    |         |           | 1 985  |  |
|              |                              | 8" DI Pipe incl Trenching          | 20  | LF    | 34.50    | 690                    | 30.00   | 600    |         |           | 1,290  |  |
|              |                              | 8" FCA                             | 2   | EA    | 500.00   | 1,000                  | 200.00  | 400    |         |           | 1,400  |  |
|              |                              | 8" Fittings                        | 4   | EA    | 450.00   | 1,800                  | 150.00  | 600    |         |           | 2,400  |  |
|              |                              | 8" Butterfly Valve                 | 2   | EA    | 1,000.00 | 2,000                  | 250.00  | 500    |         |           | 2,500  |  |
|              |                              | 8" Flow Meter                      | 1   | EA    | 6,000.00 | 6,000                  | 800.00  | 800    |         |           | 6,800  |  |
|              |                              | 8" Actuated Valve                  | 1   | EA    | 5,000.00 | 5,000                  | 500.00  | 500    |         |           | 5,500  |  |
|              |                              | Paving Restoration                 | 13  | SY    |          |                        |         |        | 75      | 1,000     | 1,000  |  |
|              |                              | Electrical for Meter/ Valve        | 1   | LS    |          |                        |         |        | 15,000  | 15,000    | 15,000 |  |
|              |                              | Underground Electrical Conduit     | 200 | LF    |          |                        |         |        | 35      | 7,000     | 7,000  |  |
|              |                              | Subtotals                          |     |       |          | 17,965                 |         | 3,910  |         | 23,000    | 44,875 |  |
|              |                              | Division 1 Costs                   | @   | 10%   |          | 1,797                  |         | 391    |         | 2,300     | 4,488  |  |
|              |                              | Subtotals                          |     |       |          | 19,762                 |         | 4,301  |         | 25,300    | 49,363 |  |
|              |                              | Taxes - Materials Costs            | @   | 8.75% |          | 1,729                  |         |        |         |           | 1,729  |  |
|              |                              | Subtotals                          |     |       |          | 21,491                 |         | 4,301  |         | 25,300    | 51,092 |  |
|              |                              | Taxes - Labor Costs                | @   | 5.00% |          |                        |         | 215    |         |           | 215    |  |
|              |                              | Subtotals                          |     |       |          | 21,491                 |         | 4,516  |         | 25,300    | 51,307 |  |
|              |                              | Contractor Markup for Sub          | @   | 12%   |          |                        |         |        |         | 3,036     | 3,036  |  |
|              |                              | Subtotals                          |     |       |          | 21,491                 |         | 4,516  |         | 28,336    | 54,343 |  |
|              |                              | Contractor OH&P                    | @   | 15%   |          | 3,224                  |         | 677    |         |           | 3,901  |  |
|              |                              | Subtotals                          |     |       |          | 24,714                 |         | 5,193  |         | 28,336    | 58,244 |  |
|              |                              | Estimate Contingency               | @   | 30%   |          |                        |         |        |         |           | 17,473 |  |
|              |                              | Subtotals                          |     |       |          |                        |         |        |         |           | 75,717 |  |
|              |                              | Escalate to Midpoint of Construct  | @   | 3%    |          |                        |         |        |         |           | -      |  |
|              |                              | Estimated Bid Cost                 |     |       |          |                        |         |        |         |           | 75,717 |  |
|              |                              | Total Estimate                     |     |       |          |                        |         |        |         |           | 76,000 |  |
|              |                              |                                    |     |       |          |                        |         |        |         |           |        |  |

| Estimate | Accuracy |
|----------|----------|
| +50%     | -30%     |

| Estimated | Range of Pro | bable Cost |
|-----------|--------------|------------|
| +50%      | Total Est.   | -30%       |
| \$114,000 | \$76,000     | \$53,200   |

#### KENNEDY/JENKS CONSULTANTS

Current at ENR

Project: Rancho Murrieta

# Prepared By: Date Prepared: JLH K/J Proj. No. 1670011\*00

Building, Area: Recycled Water Pumping Station

| -                   | Conceptual                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Constru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Esc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | alated to ENR                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\Box_{\mathbf{y}}$ | Preliminary (w/o plans)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                 | Month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | is to Midpoin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t of Construct                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ê                   | Design Development @                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _ % Comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Item                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Instal                                                                                                                                                                                                                                          | lation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sub-c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | contractor                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| No.                 | Description                                      | Qty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$/Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$/Unit                                                                                                                                                                                                                                         | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$/Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total                                                                                                 | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | Modification to Existing Pump Station Structure  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50,000.00                                                                                                                                                                                                                                       | 50,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | 50,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     | Generator Slab                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 250.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 250.00                                                                                                                                                                                                                                          | 2,667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | 5,333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | Vertical Turbine Pumps                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47,200.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 141,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10,000.00                                                                                                                                                                                                                                       | 30,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | 171,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | Pump Discharge Piping:                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | 10" Fittings/ Spools                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 500.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 200.00                                                                                                                                                                                                                                          | 2,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | 8,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     | 10" Flex Connector                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 800.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 250.00                                                                                                                                                                                                                                          | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | 3,150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     | 10" Check Valve                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,700.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 250.00                                                                                                                                                                                                                                          | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | 11,850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     | 10" Butterfly Valve                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,200.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 200.00                                                                                                                                                                                                                                          | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | 4,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     | 10" FCA                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 800.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 250.00                                                                                                                                                                                                                                          | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | 3,150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     | Pipe Supports                                    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 150.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100.00                                                                                                                                                                                                                                          | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | 1,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     | CARV                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 200.00                                                                                                                                                                                                                                          | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | 1,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     | Tee                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 800.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 350.00                                                                                                                                                                                                                                          | 1,050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | 3,450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     | 12" Discharge Header                             | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.00                                                                                                                                                                                                                                           | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | 3,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     | Pressure Gage                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 250.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 150.00                                                                                                                                                                                                                                          | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | 1,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     | Chemical Feed System                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60,895.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60,895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200.00                                                                                                                                                                                                                                          | 6,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | 66,895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     |                                                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100.000                                                                                               | 100.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     | Electrical / I&C for Pumps (from Existing MCC's) | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 180,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 180,000                                                                                               | 180,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     | VFD's 250HP (in Existing MCCs)                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26,000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3,000.00                                                                                                                                                                                                                                        | 9,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | 87,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     | Level Transitter                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4,000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,500.00                                                                                                                                                                                                                                        | 2,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | 6,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     | Emergency Generator 250KW W/ ATS & Fuel Tank     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53,500.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 53,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11,000.00                                                                                                                                                                                                                                       | 11,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | 64,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     | Cubtetele                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 070.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                 | 400 447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100.000                                                                                               | 070.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     | Subtotals                                        | @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 373,812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                 | 120,117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180,000                                                                                               | 67 3,928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                     | Subtotolo                                        | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 411 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                 | 12,012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108,000                                                                                               | 741 221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     | Toxon Materiala Conta                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 750/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                 | 132,120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 196,000                                                                                               | 25.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     | Subtotals                                        | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.73%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33,979<br>447 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                 | 132 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 198.000                                                                                               | 777 301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     | Taxes - Labor Costs                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 447,172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                 | 6 606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130,000                                                                                               | 6 606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     | Subtotale                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.0070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 117 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                 | 138 735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 198.000                                                                                               | 783 907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     | Contractor Markup for Sub                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 447,172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                 | 150,755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23 760                                                                                                | 23 760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     | Subtotals                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 447 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                 | 138 735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 221 760                                                                                               | 807.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     | Contractor OH&P                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                 | 20,810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 221,700                                                                                               | 87,886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     | Subtotals                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 514 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                 | 159 545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 221 760                                                                                               | 895 553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     | Estimate Contingency                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 014,240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                 | 100,040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 221,700                                                                                               | 268 666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     | Subtotals                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | 1 164 219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                     | Escalate to Midpoint of Construct                | @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | 1,101,210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                     | Estimated Bid Cost                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | 1164219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     | Total Estimate                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | 1.165.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                     |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                     |                                                  | Preliminary (w/o plans)         Design Development @         Item         No.       Description         Modification to Existing Pump Station Structure         Generator Slab         Vertical Turbine Pumps         10"         Pump Discharge Piping:         10" Fittings/ Spools         10" Flex Connector         10" Check Valve         10" Check Valve         10" Tex         Pipe Supports         CARV         Tee         12" Discharge Header         Pressure Gage         Chemical Feed System         Electrical / I&C for Pumps (from Existing MCC's)         VFD's 250HP (in Existing MCCs)         Level Transitter         Emergency Generator 250KW w/ ATS & Fuel Tank         Subtotals         Division 1 Costs         Subtotals         Taxes - Materials Costs         Subtotals         Contractor OH&P         Subtotals         Contractor OH&P         Subtotals         Contractor OH&P         Subtotals         Estimate Contingency         Subtotals         Estimate Contingency         Subtotals | Preliminary (w/o plans)         Design Development @         Item       Description       Qty         Modification to Existing Pump Station Structure       1         Generator Slab       11         Vertical Turbine Pumps       3         Pump Discharge Piping:       1         10" Flex Connector       3         10" Flex Connector       3         10" Butterfly Valve       3         10" Butterfly Valve       3         10" Butterfly Valve       3         10" ECA       3         Pipe Supports       6         CARV       3         Tee       3         12" Discharge Header       40         Pressure Gage       3         Chemical Feed System       1         Electrical / I&C for Pumps (from Existing MCC's)       1         VFD's 250HP (in Existing MCCs)       3         Level Transitter       1         Emergency Generator 250KW w/ ATS & Fuel Tank       1         Division 1 Costs       @         Subtotals       1         Taxes - Labor Costs       @       2         Subtotals       1       2         Subtotals       2       2      < | Preliminary (w/o plans)       Change         Design Development @       % Comp         Item       No.       Description       Qty       Units         Modification to Existing Pump Station Structure       1       LS         Generator Slab       11       CY         Vertical Turbine Pumps       3       EA         Pump Discharge Piping:       12       EA         10° Filex Connector       3       EA         10° Elex Connector       3       EA         10° To FCA       3       EA         Pipe Supports       6       EA         CARV       3       EA         10° Elex Connector       3       EA         10° To FCA       3       EA         Pipe Supports       6       EA         CARV       3       EA         10° Elextrical / 1&C for Pumps (from Existing MCC's)       1       LS         VFD's 250HP (in Existing MCCs)       1       LS         VFD's 250HP (in Existing MCCs)       1       EA         Electrical / 1&C for Pumps (from Existing MCC's)       1       EA         Division 1 Costs       @       10%       Subtotals         Taxes - Labor Costs       @       10% | Preliminary (w/o plans)       Change Order         Design Development @       % Complete         Item       Qty       Units       \$/Unit         Modification to Existing Pump Station Structure       1       LS       Mate         Modification to Existing Pump Station Structure       1       LS       Mate         Modification to Existing Pump Station Structure       1       LS       Mate         Pump Discharge Piping:       2       2       500.00       2         10' Fittings/ Spools       12       EA       800.00       3       EA       800.00         10' Flex Connector       3       EA       80.00       10' ECA       3       EA       800.00         10' Butterfly Valve       3       EA       1,200.00       6       EA       1,50.00         CARV       3       EA       80.00.00       10' ECA       3       EA       800.00         10' Butterfly Valve       3       EA       1,200.00       6       EA       1,50.00         CARV       3       EA       80.00.00       12' Discharge Header       40       LF       60.00.00         12' Discharge Header       40       LS       60.895.00       1       LS       6 | Preliminary (w/o plans)       Change Order         Design Development @       % Complete         Item       Description       Oty       Units       S/Unit       Total         Modification to Existing Pump Station Structure       1       LS | Preliminary (w/o plans)         Change Order           Design Development @         // Complete           Item<br>No.         Description         Materials         Instal           Modification to Existing Pump Station Structure         1         LS         50,000,00           Generator Slab         11         CY         250,00         2,667         250,00           Vertical Turbine Pumps         3         EA         47,200,00         141,600         10,000,00           Pump Discharge Piping:         -         -         -         -         -         -           10° Fittings/ Spools         12         EA         500,00         2,400         250,00           10° Check Valve         3         EA         3,700,00         11,100         250,00           10° Fittings/ Spools         12         EA         300,00         2,400         250,00           10° Evector         3         EA         400,00         1,200         200,00           10° Evector         3         EA         400,00         2,400         250,00           10° Evector         3         EA         400,00         2,400         250,00           10° EA         3         EA         400,00 <t< td=""><td>Preliminary (w/o plans)         Change Order         Month           Design Development @         % Complete         Not         Total         SUbit         Total         SUbit         Total         Installation           Modification to Existing Pump Station Structure         1         LS         50,000,00         50,000         60,000,00         50,000         26,667         250,00         2,667           Vertical Turbine Pumps         3         EA         47,200,00         141,600         10,000,00         30,000           Pump Discharge Piping:         -         -         -         -         -         -           10° Fittings/ Spacis         12         EA         500,000         2,600         750           10° Check Valve         3         EA         300,000         2,400         250,00         750           10° Check Valve         3         EA         400,000         3,600         200,00         750           10° Check Valve         3         EA         400,000         1,200         200,00         600           10° FCA         3         EA         800,000         2,400         250,00         750           10° Edarge Header         40         LF         60,000</td><td>Pretiminary (w/o plans)         Charge Order         Months to Midpoin           Design Development @        </td><td>Preliminary (wo plans)         Charge Order         Motheta Midpoint of Construct           No.         Description         Qty         Units         S/Unit         Total         S/Unit&lt;</td></t<> | Preliminary (w/o plans)         Change Order         Month           Design Development @         % Complete         Not         Total         SUbit         Total         SUbit         Total         Installation           Modification to Existing Pump Station Structure         1         LS         50,000,00         50,000         60,000,00         50,000         26,667         250,00         2,667           Vertical Turbine Pumps         3         EA         47,200,00         141,600         10,000,00         30,000           Pump Discharge Piping:         -         -         -         -         -         -           10° Fittings/ Spacis         12         EA         500,000         2,600         750           10° Check Valve         3         EA         300,000         2,400         250,00         750           10° Check Valve         3         EA         400,000         3,600         200,00         750           10° Check Valve         3         EA         400,000         1,200         200,00         600           10° FCA         3         EA         800,000         2,400         250,00         750           10° Edarge Header         40         LF         60,000 | Pretiminary (w/o plans)         Charge Order         Months to Midpoin           Design Development @ | Preliminary (wo plans)         Charge Order         Motheta Midpoint of Construct           No.         Description         Qty         Units         S/Unit         Total         S/Unit< |

· · · · · ·

|             | Estima            | te Accuracy  |  |  |  |  |  |  |
|-------------|-------------------|--------------|--|--|--|--|--|--|
|             | +50%              | -30%         |  |  |  |  |  |  |
|             |                   |              |  |  |  |  |  |  |
| Estimate    | ed Range of P     | robable Cost |  |  |  |  |  |  |
| +50%        | +50% Total Est30% |              |  |  |  |  |  |  |
| \$1,747,500 | \$1,165,000       | \$815,500    |  |  |  |  |  |  |

E . .....

r

Project: Rancho Murrieta

Building, Area: Dist

District Headquarters Conversion Irrigation Connection

| Estimate Type | :           | Conceptual<br>Preliminary (w/o plans) |     | ] Construc<br>] Change ( | tion<br>Drder   |                 |                   | Months         | C<br>Esca<br>s to Midpoint | urrent at ENR<br>alated to ENR<br>t of Construct |        |
|---------------|-------------|---------------------------------------|-----|--------------------------|-----------------|-----------------|-------------------|----------------|----------------------------|--------------------------------------------------|--------|
|               |             | Design Development @                  |     | <sub>-</sub> % Compl     | ete             |                 |                   |                |                            |                                                  |        |
| Spec.<br>No.  | Item<br>No. | Description                           | Qty | Units                    | Mate<br>\$/Unit | erials<br>Total | Instal<br>\$/Unit | ation<br>Total | Sub-c<br>\$/Unit           | ontractor<br>Total                               | Total  |
|               |             | Connection Piping appurtenances       | 2   | LS                       | 500.00          | 1.000           | 500.00            | 1.000          |                            |                                                  | 2.000  |
|               |             | 4" PVC Pipeline                       | 270 | LF                       | 8.00            | 2.160           | 17.00             | 4,590          |                            |                                                  | 6,750  |
|               |             | Lanscaping Restoration                | 180 | SY                       |                 | ,               |                   | ,              | 10                         | 1,800                                            | 1,800  |
|               |             | Cross Connection Testing              | 1   | LS                       |                 |                 | 1,000.00          | 1,000          |                            | Í Í                                              | 1,000  |
|               |             | ¥                                     |     |                          |                 |                 | · ·               |                |                            |                                                  |        |
|               |             | Subtotals                             |     | · ·                      |                 | 3,160           |                   | 6,590          |                            | 1,800                                            | 11,550 |
|               |             | Division 1 Costs                      | @   | 10%                      |                 | 316             |                   | 659            |                            | 180                                              | 1,155  |
|               |             | Subtotals                             |     |                          |                 | 3,476           |                   | 7,249          |                            | 1,980                                            | 12,705 |
|               |             | Taxes - Materials Costs               | @   | 8.75%                    |                 | 304             |                   |                |                            |                                                  | 304    |
|               |             | Subtotals                             |     |                          |                 | 3,780           |                   | 7,249          |                            | 1,980                                            | 13,009 |
|               |             | Taxes - Labor Costs                   | @   | 5.00%                    |                 |                 |                   | 362            |                            |                                                  | 362    |
|               |             | Subtotals                             |     |                          |                 | 3,780           |                   | 7,611          |                            | 1,980                                            | 13,372 |
|               |             | Contractor Markup for Sub             | @   | 12%                      |                 |                 |                   |                |                            | 238                                              | 238    |
|               |             | Subtotals                             |     |                          |                 | 3,780           |                   | 7,611          |                            | 2,218                                            | 13,609 |
|               |             | Contractor OH&P                       | @   | 15%                      |                 | 567             |                   | 1,142          |                            |                                                  | 1,709  |
|               |             | Subtotals                             |     |                          |                 | 4,347           |                   | 8,753          |                            | 2,218                                            | 15,318 |
|               |             | Estimate Contingency                  | @   | 30%                      |                 |                 |                   |                |                            |                                                  | 4,595  |
|               |             | Subtotals                             |     |                          |                 |                 |                   |                |                            |                                                  | 19,913 |
|               |             | Escalate to Midpoint of Construct     | @   | 3%                       |                 |                 |                   |                |                            |                                                  | -      |
|               |             | Estimated Bid Cost                    |     |                          |                 |                 |                   |                |                            |                                                  | 19,913 |
|               |             | Total Estimate                        |     |                          |                 |                 |                   |                |                            |                                                  | 20,000 |
|               |             |                                       |     |                          |                 |                 |                   |                |                            |                                                  |        |

| Estimate | Accuracy |
|----------|----------|
| +50%     | -30%     |

| Estimated Range of Probable Cost |            |          |  |  |  |  |
|----------------------------------|------------|----------|--|--|--|--|
| +50%                             | Total Est. | -30%     |  |  |  |  |
| \$30,000                         | \$20,000   | \$14,000 |  |  |  |  |

KENNEDY/JENKS CONSULTANTS Prepared By:

 Date Prepared:
 JLH

 K/J Proj. No.
 1670011\*00

Project: Rancho Murrieta

5

Building, Area: NW Recycled Water Transmission Main

| Estimate Type:        |          | Conceptual<br>Preliminary (w/o plans)<br>Design Development @ |                 | Constru<br>Change<br>% Comp | ction<br>Order<br>lete |                             |          | Mont   | C<br>Esc<br>hs to Midpoin | Current at ENR<br>calated to ENR<br>it of Construct |         |
|-----------------------|----------|---------------------------------------------------------------|-----------------|-----------------------------|------------------------|-----------------------------|----------|--------|---------------------------|-----------------------------------------------------|---------|
| Spec.                 | Item     |                                                               | Materials       |                             |                        | Installation Sub-contractor |          |        |                           |                                                     |         |
| Ňo.                   | No.      | Description                                                   | Qty             | Units                       | \$/Unit                | Total                       | \$/Unit  | Total  | \$/Unit                   | Total                                               | Total   |
| Highway 16 Undercro   | ossing a | nd Connection to Existing 12"ACP                              |                 |                             |                        |                             |          |        |                           |                                                     |         |
|                       |          | Connection to Existing                                        | 1               | EA                          | 500.00                 | 500                         | 500.00   | 500    |                           |                                                     | 1,000   |
|                       |          | 12" PVC Pipeline                                              | 1,000           | LF                          | 23.50                  | 23,500                      | 57.50    | 57,500 |                           |                                                     | 81,000  |
|                       |          | 12" Fittings Rest Jnt                                         | 8               | EA                          | 635.00                 | 5,292                       | 125.00   | 1,042  |                           |                                                     | 6,333   |
|                       |          | AAV Assembly                                                  | 1               | EA                          | 2,500.00               | 2,500                       | 500.00   | 500    |                           |                                                     | 3,000   |
|                       |          | Paving Removal (legacy lane/ Lon                              |                 | SY                          |                        |                             |          |        | 10                        |                                                     |         |
|                       |          | Paving Restoration                                            |                 | SY                          |                        |                             |          |        | 75                        |                                                     |         |
|                       |          | Traffic Control                                               |                 | DY                          | 250.00                 |                             | 1,040.00 |        |                           |                                                     |         |
|                       |          |                                                               |                 |                             |                        |                             |          |        |                           |                                                     |         |
| Interconnecting pipir | ng betwe | een Legacy Lane & Lookout Hill Storage Ta                     | ank (Along Leg  | acy Lane, L                 | one Pine Drive an      |                             |          |        |                           |                                                     |         |
|                       |          | Connection to Existing                                        | 1               | EA                          | 500.00                 | 500                         | 500.00   | 500    |                           |                                                     | 1,000   |
|                       |          | 12" PVC Pipeline (along Legacy &                              | 2,500           | LF                          | 23.50                  | 58,750                      | 26.00    | 65,000 |                           |                                                     | 123,750 |
|                       |          | 12" PVC Pipeline (up hill)                                    | 300             | LF                          | 23.50                  | 7,050                       | 26.00    | 7,800  |                           |                                                     | 14,850  |
|                       |          | 12" Fittings Rest Jnt                                         | 21              | EA                          | 635.00                 | 13,229                      | 125.00   | 2,604  |                           |                                                     | 15,833  |
|                       |          | AAV Assembly                                                  | 1               | EA                          | 2,500.00               | 2,500                       | 500.00   | 500    |                           |                                                     | 3,000   |
|                       |          | Paving Removal (legacy lane/ Lon                              | 1,667           | SY                          |                        |                             |          |        | 10                        | 16,667                                              | 16,667  |
|                       |          | Paving Restoration                                            | 1,667           | SY                          |                        |                             |          |        | 75                        | 125,000                                             | 125,000 |
|                       |          | Traffic Control                                               | 25              | DY                          | 250.00                 | 6,250                       | 1,040.00 | 26,000 |                           |                                                     | 32,250  |
|                       |          |                                                               |                 |                             |                        |                             |          |        |                           |                                                     |         |
| Lookout Hill Booster  | pump S   | Station to Existing FM Connection (down hill                  | , along Lone pi | ne drive, thr               | ough CIA ditch)        |                             |          |        |                           |                                                     |         |
|                       |          | Connection at Pump Station                                    | 1               | EA                          | 500.00                 | 500                         | 500.00   | 500    |                           |                                                     | 1,000   |
|                       |          | 12" PVC Pipeline                                              | 1.550           | IF                          | 23.50                  | 36.425                      | 26.00    | 40.300 |                           |                                                     | 76,725  |
|                       |          | 12" PVC Pipeline (along cia ditch)                            | 850             | I F                         | 23.50                  | 19,975                      | 26.00    | 22,100 |                           |                                                     | 42.075  |
|                       |          | 12" Fittings                                                  | 20              | FA                          | 635.00                 | 12,700                      | 125.00   | 2,500  |                           |                                                     | 15,200  |
|                       |          | AAV Assembly                                                  | 1               | FA                          | 2.500.00               | 2,500                       | 500.00   | 500    |                           |                                                     | 3.000   |
|                       |          | Connection to Existing FM                                     | 1               | FA                          | 500.00                 | 500                         | 500.00   | 500    |                           |                                                     | 1 000   |
|                       |          | Ditch Postoration                                             | 567             | SV.                         | 000.00                 | 000                         | 5.00     | 2 833  |                           |                                                     | 2,833   |
|                       |          | Traffic Control                                               | 16              |                             | 250.00                 | 2 975                       | 1 040 00 | 2,033  |                           | +                                                   | 2,000   |
|                       |          |                                                               | 10              |                             | 230.00                 | 3,075                       | 1,040.00 | 10,120 |                           |                                                     | 19,995  |
| Existing 12" Forcem   | ain Reha | abilitation (along Stonebouse Road)                           |                 |                             |                        |                             |          |        |                           |                                                     |         |
|                       |          | Pineline Assesment                                            |                 | IF                          |                        |                             |          |        | 10                        |                                                     |         |
|                       |          | Pipeline Repair - CIPP (66%)                                  |                 |                             |                        |                             |          |        | 59                        |                                                     |         |
|                       |          | 12" PVC Pipeline (33% replaced)                               |                 |                             | 23 50                  |                             | 26.00    |        |                           |                                                     |         |
|                       |          | 12" Pipe Removal                                              |                 |                             | 20.00                  |                             | 8.00     |        |                           |                                                     |         |

 Date Prepared:
 JLH

 K/J Proj. No.
 1670011\*00

App A\_Final RMCSD PDR Cost Estimate (w-o esc).xlsx

| Traffic Control                   |   | DY    | 250.00  | 1,040.00 |         |           |
|-----------------------------------|---|-------|---------|----------|---------|-----------|
|                                   |   |       |         |          |         |           |
|                                   |   |       |         |          |         |           |
| Subtotals                         |   |       | 196,546 | 247,299  | 141,667 | 585,512   |
| Division 1 Costs                  | @ | 10%   | 19,655  | 24,730   | 14,167  | 58,551    |
| Subtotals                         |   |       | 216,200 | 272,029  | 155,833 | 644,063   |
| Taxes - Materials Costs           | @ | 8.75% | 18,918  |          |         | 18,918    |
| Subtotals                         |   |       | 235,118 | 272,029  | 155,833 | 662,980   |
| Taxes - Labor Costs               | @ | 5.00% |         | 13,601   |         | 13,601    |
| Subtotals                         |   |       | 235,118 | 285,631  | 155,833 | 676,582   |
| Contractor Markup for Sub         | @ | 12%   |         |          | 18,700  | 18,700    |
| Subtotals                         |   |       | 235,118 | 285,631  | 174,533 | 695,282   |
| Contractor OH&P                   | @ | 15%   | 35,268  | 42,845   |         | 78,112    |
| Subtotals                         |   |       | 270,386 | 328,475  | 174,533 | 773,394   |
| Estimate Contingency              | @ | 30%   |         |          |         | 232,018   |
| Subtotals                         |   |       |         |          |         | 1,005,412 |
| Escalate to Midpoint of Construct | @ | 3%    |         |          |         | -         |
| Estimated Bid Cost                |   |       |         |          |         | 1,005,412 |
| Total Estimate                    |   |       |         |          |         | 1,006,000 |
|                                   |   |       |         |          |         |           |

Estimate Accuracy +50% -30%

| Estimated Range of Probable Cost |             |           |  |  |  |
|----------------------------------|-------------|-----------|--|--|--|
| +50%                             | Total Est.  | -30%      |  |  |  |
| \$1,509,000                      | \$1,006,000 | \$704,200 |  |  |  |

#### Project: Rancho Murrieta

Building, Area: Lookout Hill Booster Pumping Station

| Estimate Type: Conceptual<br>Preliminary (w/o plans)<br>Design Development @ |      |                                                    |          | Constru | ction<br>Order |         | Current at ENR<br>Escalated to ENR<br>Months to Midpoint of Construct |         |         |            |         |  |
|------------------------------------------------------------------------------|------|----------------------------------------------------|----------|---------|----------------|---------|-----------------------------------------------------------------------|---------|---------|------------|---------|--|
| Snec                                                                         | ltem |                                                    |          |         | Mate           | riale   | Instal                                                                | lation  | Sub-(   | contractor |         |  |
| No.                                                                          | No.  | Description                                        | Qty      | Units   | \$/Unit        | Total   | \$/Unit                                                               | Total   | \$/Unit | Total      | Total   |  |
|                                                                              |      | Misc Sitework                                      | 1        | LS      |                |         | 60,000.00                                                             | 60,000  |         |            | 60,000  |  |
|                                                                              |      |                                                    |          |         |                |         |                                                                       | , i     |         |            | *       |  |
|                                                                              |      |                                                    |          |         |                |         |                                                                       |         |         |            |         |  |
|                                                                              |      | Pump Station Foundation(Cans)                      | 12       | CY      | 400.00         | 4,741   | 400.00                                                                | 4,741   |         |            | 9,481   |  |
|                                                                              |      | Pump Station SOG                                   | 11       | CY      | 250.00         | 2,778   | 250.00                                                                | 2,778   |         |            | 5,556   |  |
|                                                                              |      | Generator Slab                                     | 6        | CY      | 250.00         | 1,481   | 250.00                                                                | 1,481   |         |            | 2,963   |  |
|                                                                              |      | Vertical Turbine Pumps                             | 2        | EA      | 33,002.00      | 66,004  | 8,400.00                                                              | 16,800  |         |            | 82,804  |  |
|                                                                              |      |                                                    |          |         |                |         |                                                                       |         |         | _          |         |  |
|                                                                              |      | * Pumps outdoor, no enclosure or building included | •        |         |                |         |                                                                       |         |         |            |         |  |
|                                                                              |      | 10" Butterfly Valve w/ Ext Op                      | 2        | EA      | 1,300.00       | 2,600   | 300.00                                                                | 600     |         |            | 3,200   |  |
|                                                                              |      | 10" FCA                                            | 2        | EA      | 800.00         | 1,600   | 250.00                                                                | 500     |         | ++         | 2,100   |  |
|                                                                              |      | Pump Discharge Dining:                             |          |         |                |         |                                                                       |         |         | +          |         |  |
|                                                                              |      | 10" Fittings/ Spools                               | 12       | FΔ      | 500.00         | 6.000   | 200.00                                                                | 2 400   |         | + +        | 8 400   |  |
|                                                                              |      | 10" Flex Connector                                 | 2        | ΕΔ      | 800.00         | 1,600   | 250.00                                                                | 500     |         | +          | 2 100   |  |
|                                                                              |      | 10" Check Valve                                    | 2        | FA      | 3 700 00       | 7 400   | 250.00                                                                | 500     |         | +          | 7 900   |  |
|                                                                              |      | 10" Butterfly Valve                                | 2        | FA      | 1,200.00       | 2,400   | 200.00                                                                | 400     |         |            | 2,800   |  |
|                                                                              |      | 10" FCA                                            | 2        | FA      | 800.00         | 1,600   | 250.00                                                                | 500     |         |            | 2,100   |  |
|                                                                              |      | Pipe Supports                                      | 4        | EA      | 150.00         | 600     | 100.00                                                                | 400     |         |            | 1.000   |  |
|                                                                              |      | CARV                                               | 2        | EA      | 400.00         | 800     | 200.00                                                                | 400     |         |            | 1.200   |  |
|                                                                              |      | Тее                                                | 2        | EA      | 800.00         | 1.600   | 350.00                                                                | 700     |         |            | 2.300   |  |
|                                                                              |      | 12" Discharge Header                               | 20       | LF      | 60.00          | 1.200   | 25.00                                                                 | 500     |         |            | 1,700   |  |
|                                                                              |      | Pressure Gage                                      | 2        | EA      | 250.00         | 500     | 150.00                                                                | 300     |         |            | 800     |  |
|                                                                              |      |                                                    |          |         |                |         |                                                                       |         | ·       |            |         |  |
|                                                                              |      | Power Feed to Pump Station                         | 1        | LS      |                |         |                                                                       |         | 25,000  | 25,000     | 25,000  |  |
|                                                                              |      | Electrical / I&C                                   | 1        | LS      |                |         |                                                                       |         | 80,000  | 80,000     | 80,000  |  |
|                                                                              |      | VFD's 50HP                                         | 2        | EA      | 10,000.00      | 20,000  | 3,000.00                                                              | 6,000   |         |            | 26,000  |  |
|                                                                              |      | Emergency Generator 50kW w/ ATS & Fuel Tank        | 1        | EA      | 22,000.00      | 22,000  | 6,900.00                                                              | 6,900   |         |            | 28,900  |  |
|                                                                              |      |                                                    |          |         |                |         |                                                                       |         |         |            |         |  |
|                                                                              |      | Subtotals                                          |          |         |                | 144,904 |                                                                       | 106,400 |         | 105,000    | 356,304 |  |
|                                                                              |      | Division 1 Costs                                   | @        | 10%     |                | 14,490  |                                                                       | 10,640  |         | 10,500     | 35,630  |  |
|                                                                              |      | Subtotals                                          |          |         |                | 159,394 |                                                                       | 117,040 |         | 115,500    | 391,934 |  |
|                                                                              |      | I axes - Materials Costs                           | @        | 8.75%   |                | 13,947  |                                                                       |         |         |            | 13,947  |  |
|                                                                              |      | Subtotals                                          |          | =       |                | 173,341 |                                                                       | 117,040 |         | 115,500    | 405,881 |  |
|                                                                              |      | Taxes - Labor Costs                                | @        | 5.00%   |                | 170.011 |                                                                       | 5,852   |         | 445 500    | 5,852   |  |
| -                                                                            |      | Subtotais                                          |          | 100/    |                | 173,341 |                                                                       | 122,892 |         | 115,500    | 411,733 |  |
|                                                                              |      |                                                    | <u>a</u> | 12%     |                | 470.044 |                                                                       | 400.000 |         | 13,860     | 13,860  |  |
|                                                                              |      | Sudiolais                                          |          |         |                | 173,341 |                                                                       | 122,892 |         | 129,360    | 425,593 |  |

 Prepared By:

 Date Prepared:
 JLH

 K/J Proj. No.
 1670011\*00

| Contractor OH&P                   | @ | 15% | 26,001  | 18,434  |         | 44,435  |
|-----------------------------------|---|-----|---------|---------|---------|---------|
| Subtotals                         |   |     | 199,343 | 141,326 | 129,360 | 470,028 |
| Estimate Contingency              | @ | 30% |         |         |         | 141,009 |
| Subtotals                         |   |     |         |         |         | 611,037 |
| Escalate to Midpoint of Construct | @ | 3%  |         |         |         | -       |
| Estimated Bid Cost                |   |     |         |         |         | 611,037 |
| Total Estimate                    |   |     |         |         |         | 612,000 |
|                                   |   |     |         |         |         |         |

· · · · · ·

| Estimate | Accuracy |
|----------|----------|
| +50%     | -30%     |

| Estimated | Estimated Range of Probable Cost |           |  |  |  |  |  |  |  |  |  |
|-----------|----------------------------------|-----------|--|--|--|--|--|--|--|--|--|
| +50%      | Total Est.                       | -30%      |  |  |  |  |  |  |  |  |  |
| \$918,000 | \$612,000                        | \$428,400 |  |  |  |  |  |  |  |  |  |

Project: Rancho Murrieta

Building, Area:

Escuela Park Conversion - Recycled Water Irrigation Connection

#### **KENNEDY/JENKS CONSULTANTS**

Prepared By: Date Prepared: JLH K/J Proj. No. 1670011\*00

| Estimate Typ | oe:  | Conceptual                        |     | Construc  | tion      |       | Current at ENR<br>Escalated to ENR |         |                |                |                                       |  |
|--------------|------|-----------------------------------|-----|-----------|-----------|-------|------------------------------------|---------|----------------|----------------|---------------------------------------|--|
|              |      | Preliminary (w/o plans)           |     | Change (  | Order     |       |                                    | Month   | s to Midpoin   | t of Construct |                                       |  |
|              | Ē    | Design Development @              |     | _ % Compl | ete       |       |                                    |         |                |                |                                       |  |
| Spec.        | Item |                                   |     |           | Materials |       | Instal                             | llation | Sub-contractor |                | · · · · · · · · · · · · · · · · · · · |  |
| Ňo.          | No.  | Description                       | Qty | Units     | \$/Unit   | Total | \$/Unit                            | Total   | \$/Unit        | Total          | Total                                 |  |
|              |      | Connection Pining appurtenances   | 2   | 19        | 500.00    | 1 000 | 500.00                             | 1 000   |                |                | 2 000                                 |  |
|              |      | 4" PVC Pipeline                   | 200 |           | 8.00      | 1,000 | 17.00                              | 3,400   |                |                | 2,000                                 |  |
|              |      | Lanscaping Restoration            | 133 | SY        | 0.00      | 1,000 | 17.00                              | 3,400   | 10             | 1 333          | 1 333                                 |  |
|              |      | Paving Restoration                | 100 | 0.        |           | 1     |                                    |         | 10             | 1,000          | 1,000                                 |  |
|              |      | Cross Connection Testing          | 1   | LS        |           |       |                                    |         | 1,000          | 1,000          | 1,000                                 |  |
|              |      |                                   |     |           |           |       |                                    |         |                |                |                                       |  |
|              |      | Subtotals                         |     |           |           | 2,600 |                                    | 4,400   |                | 2,333          | 9,333                                 |  |
|              |      | Division 1 Costs                  | @   | 10%       |           | 260   |                                    | 440     |                | 233            | 933                                   |  |
|              |      | Subtotals                         |     |           |           | 2,860 |                                    | 4,840   |                | 2,567          | 10,267                                |  |
|              |      | Taxes - Materials Costs           | @   | 8.75%     |           | 250   |                                    |         |                |                | 250                                   |  |
|              |      | Subtotals                         |     |           |           | 3,110 |                                    | 4,840   |                | 2,567          | 10,517                                |  |
|              |      | Taxes - Labor Costs               | @   | 5.00%     |           |       |                                    | 242     |                |                | 242                                   |  |
|              |      | Subtotals                         |     |           |           | 3,110 |                                    | 5,082   |                | 2,567          | 10,759                                |  |
|              |      | Contractor Markup for Sub         | @   | 12%       |           |       |                                    |         |                | 308            | 308                                   |  |
|              |      | Subtotals                         |     |           |           | 3,110 |                                    | 5,082   |                | 2,875          | 11,067                                |  |
|              |      | Contractor OH&P                   | @   | 15%       |           | 467   |                                    | 762     |                |                | 1,229                                 |  |
|              |      | Subtotals                         |     |           |           | 3,577 |                                    | 5,844   |                | 2,875          | 12,296                                |  |
|              |      | Estimate Contingency              | @   | 30%       |           |       |                                    |         |                |                | 3,689                                 |  |
|              |      | Subtotals                         |     |           |           |       |                                    |         |                |                | 15,984                                |  |
|              |      | Escalate to Midpoint of Construct | @   | 3%        |           |       |                                    |         |                |                | -                                     |  |
|              |      | Estimated Bid Cost                |     |           |           |       |                                    |         |                |                | 15,984                                |  |
|              |      | Total Estimate                    |     |           |           |       |                                    |         |                |                | 16,000                                |  |
|              |      |                                   |     |           |           |       |                                    |         |                |                |                                       |  |

. . . . .

Estimate Accuracy +50% -30%

| Estimated | Estimated Range of Probable Cost |          |  |  |  |  |  |  |  |  |  |
|-----------|----------------------------------|----------|--|--|--|--|--|--|--|--|--|
| +50%      | Total Est.                       | -30%     |  |  |  |  |  |  |  |  |  |
| \$24,000  | \$16,000                         | \$11,200 |  |  |  |  |  |  |  |  |  |

Project: Rancho Murrieta

**Building, Area:** 

Stonehouse Park Conversion - Recycled Water Irrigation Connection

#### **KENNEDY/JENKS CONSULTANTS**

Prepared By: 
 Date Prepared:
 JLH

 K/J Proj. No.
 1670011\*00

|              |      |                                   |     |           |         |        |         |         | С              | urrent at ENR  |        |
|--------------|------|-----------------------------------|-----|-----------|---------|--------|---------|---------|----------------|----------------|--------|
| Estimate Typ | be:  | Conceptual                        |     | Construc  | tion    |        |         |         | Esc            | alated to ENR  |        |
|              |      | Preliminary (w/o plans)           |     | Change C  | Order   |        |         | Month   | s to Midpoin   | t of Construct |        |
|              |      | Design Development @              |     | _ % Compl | ete     |        |         |         |                |                |        |
| Spec.        | Item |                                   |     |           | Mate    | erials | Insta   | llation | Sub-contractor |                |        |
| Ňo.          | No.  | Description                       | Qty | Units     | \$/Unit | Total  | \$/Unit | Total   | \$/Unit        | Total          | Total  |
|              |      | Connection Piping appurtenances   | 1   | LS        | 500.00  | 500    | 500.00  | 500     |                |                | 1,000  |
|              |      | 4" PVC Pipeline                   | 475 | LF        | 8.00    | 3,800  | 17.00   | 8,075   |                |                | 11,875 |
|              |      | Paving Removal                    | 43  | SY        |         |        |         |         | 10             | 433            | 433    |
|              |      | Paving Restoration                | 43  | SY        |         |        |         |         | 75             | 3,250          | 3,250  |
|              |      | Lanscaping Restoration            | 345 | SY        |         |        |         |         | 10             | 3,450          | 3,450  |
|              |      | Cross Connection Testing          | 1   | IS        |         |        |         |         | 1 000          | 1 000          | 1 000  |
|              |      | croco connection recting          |     |           |         |        |         |         | 1,000          | 1,000          | 1,000  |
|              |      | Subtotals                         |     |           |         | 4,300  |         | 8,575   |                | 8,133          | 21,008 |
|              |      | Division 1 Costs                  | @   | 10%       |         | 430    |         | 858     |                | 813            | 2,101  |
|              |      | Subtotals                         |     |           |         | 4,730  |         | 9,433   |                | 8,947          | 23,109 |
|              |      | Taxes - Materials Costs           | @   | 8.75%     |         | 414    |         |         |                |                | 414    |
|              |      | Subtotals                         |     |           |         | 5,144  |         | 9,433   |                | 8,947          | 23,523 |
|              |      | Taxes - Labor Costs               | @   | 5.00%     |         |        |         | 472     |                |                | 472    |
|              |      | Subtotals                         |     |           |         | 5,144  |         | 9,904   |                | 8,947          | 23,995 |
|              |      | Contractor Markup for Sub         | @   | 12%       |         |        |         |         |                | 1,074          | 1,074  |
|              |      | Subtotals                         |     |           |         | 5,144  |         | 9,904   |                | 10,020         | 25,068 |
|              |      | Contractor OH&P                   | @   | 15%       |         | 772    |         | 1,486   |                |                | 2,257  |
|              |      | Subtotals                         |     |           |         | 5,915  |         | 11,390  |                | 10,020         | 27,325 |
|              |      | Estimate Contingency              | @   | 30%       |         |        |         |         |                |                | 8,198  |
|              |      | Subtotals                         |     |           |         |        |         |         |                |                | 35,523 |
|              |      | Escalate to Midpoint of Construct | @   | 3%        |         |        |         |         |                |                | -      |
|              |      | Estimated Bid Cost                |     |           |         |        |         |         |                |                | 35,523 |
|              |      | Total Estimate                    |     |           |         |        | _       |         |                |                | 36,000 |
|              |      |                                   |     |           |         |        |         |         |                |                |        |

Estimate Accuracy +50% -30%

| E  | Estimated Range of Probable Cost |            |          |  |  |  |  |  |  |  |  |  |
|----|----------------------------------|------------|----------|--|--|--|--|--|--|--|--|--|
|    | +50%                             | Total Est. | -30%     |  |  |  |  |  |  |  |  |  |
| \$ | 54,000                           | \$36,000   | \$25,200 |  |  |  |  |  |  |  |  |  |

#### Rancho Murrieta Project:

**Building, Area:** 

Lookout Hill Water StorageTank

| Estimate Type | :    | Conceptual<br>Preliminary (w/o plans)<br>Design Development @ |     | Construction       Escalated to ENR         Change Order       Months to Midpoint of Construct         % Complete       % Complete |                 |                 |                   |                 |                  |            |         |  |
|---------------|------|---------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-------------------|-----------------|------------------|------------|---------|--|
| Spec.         | Item | Description                                                   | Otv | Unite                                                                                                                              | Mate<br>\$/Unit | erials<br>Total | Instal<br>\$/Unit | lation<br>Total | Sub-c<br>\$/Unit | contractor | Total   |  |
| 110.          | NO.  | Description                                                   | QLY | Onits                                                                                                                              | φ/ΟΠΠ           | Total           | φ/ΟΠπ             | Total           | \$/Offic         | Total      | Total   |  |
|               |      | Demo Existing SteelTank                                       | 1   | FA                                                                                                                                 |                 |                 | 40 000 00         | 40.000          |                  |            | 40 000  |  |
|               |      | Demo Existing Tank foundation                                 | 84  | CY                                                                                                                                 | 75.00           | 6,332           | 50.00             | 4,222           |                  |            | 10,554  |  |
|               |      |                                                               |     |                                                                                                                                    |                 | ,<br>           |                   | ,               |                  |            | ,       |  |
|               |      | New Storage Tank 200,000 gal                                  | 1   | EA                                                                                                                                 |                 |                 |                   |                 | 135,000          | 135,000    | 135,000 |  |
|               |      | Tank Foundation                                               | 84  | CY                                                                                                                                 | 250.00          | 21,108          | 250.00            | 21,108          |                  |            | 42,216  |  |
|               |      | Excavation                                                    | 84  | CY                                                                                                                                 |                 |                 | 15.00             | 1,266           |                  |            | 1,266   |  |
|               |      |                                                               |     |                                                                                                                                    |                 |                 |                   |                 |                  |            |         |  |
|               |      | Misc Sitework                                                 | 1   | LS                                                                                                                                 |                 |                 | 75,000.00         | 75,000          |                  |            | 75,000  |  |
|               |      | Connection Piping Tank to Booste                              | 1   | LS                                                                                                                                 | 5,000.00        | 5,000           | 5,000.00          | 5,000           |                  |            | 10,000  |  |
|               |      | Overflow Piping                                               | 1   | LS                                                                                                                                 | 5,000.00        | 5,000           | 5,000.00          | 5,000           |                  |            | 10,000  |  |
|               |      |                                                               |     |                                                                                                                                    |                 |                 |                   |                 |                  |            |         |  |
|               |      | Subtotals                                                     |     |                                                                                                                                    |                 | 37,440          |                   | 151,596         |                  | 135,000    | 324,036 |  |
|               |      | Division 1 Costs                                              | @   | 10%                                                                                                                                |                 | 3,744           |                   | 15,160          |                  | 13,500     | 32,404  |  |
|               |      | Subtotals                                                     |     |                                                                                                                                    |                 | 41,184          |                   | 166,755         |                  | 148,500    | 356,440 |  |
|               |      | Taxes - Materials Costs                                       | @   | 8.75%                                                                                                                              |                 | 3,604           |                   |                 |                  |            | 3,604   |  |
|               |      | Subtotals                                                     |     |                                                                                                                                    |                 | 44,788          |                   | 166,755         |                  | 148,500    | 360,043 |  |
|               |      | Taxes - Labor Costs                                           | @   | 5.00%                                                                                                                              |                 |                 |                   | 8,338           |                  |            | 8,338   |  |
|               |      | Subtotals                                                     |     |                                                                                                                                    |                 | 44,788          |                   | 175,093         |                  | 148,500    | 368,381 |  |
|               |      | Contractor Markup for Sub                                     | @   | 12%                                                                                                                                |                 |                 |                   |                 |                  | 17,820     | 17,820  |  |
|               |      | Subtotals                                                     |     |                                                                                                                                    |                 | 44,788          |                   | 175,093         |                  | 166,320    | 386,201 |  |
|               |      | Contractor OH&P                                               | @   | 15%                                                                                                                                |                 | 6,718           |                   | 26,264          |                  |            | 32,982  |  |
|               |      | Subtotals                                                     |     |                                                                                                                                    |                 | 51,506          |                   | 201,357         |                  | 166,320    | 419,183 |  |
|               |      | Estimate Contingency                                          | @   | 30%                                                                                                                                |                 |                 |                   |                 |                  |            | 125,755 |  |
|               |      | Subtotals                                                     |     |                                                                                                                                    |                 |                 |                   |                 |                  |            | 544,938 |  |
|               |      | Escalate to Midpoint of Construct                             | @   | 3%                                                                                                                                 |                 |                 |                   |                 |                  |            | -       |  |

Estimated Bid Cost

Total Estimate

**KENNEDY/JENKS CONSULTANTS** 

Prepared By: 
 Date Prepared:
 JLH

 K/J Proj. No.
 1670011\*00

544,938

545,000

| Estimated | Estimated Range of Probable Cost |           |  |  |  |  |  |  |  |  |
|-----------|----------------------------------|-----------|--|--|--|--|--|--|--|--|
| +50%      | Total Est.                       | -30%      |  |  |  |  |  |  |  |  |
| \$817,500 | \$545,000                        | \$381,500 |  |  |  |  |  |  |  |  |

Project: Rancho Murrieta

Building, Area:

North Main Gate Conversion - Recycled Water Irrigation Connection

#### **KENNEDY/JENKS CONSULTANTS**

 Prepared By:

 Date Prepared:
 JLH

 K/J Proj. No.
 1670011\*00

| Estimate Typ | pe:         | Conceptual<br>Preliminary (w/o plans)<br>Design Development @ |     | Construc<br>Change (<br>% Compl | tion<br>Drder<br>ete |                 |                   | Months           | C<br>Esc<br>s to Midpoin | alated to ENR _<br>t of Construct _ |           |
|--------------|-------------|---------------------------------------------------------------|-----|---------------------------------|----------------------|-----------------|-------------------|------------------|--------------------------|-------------------------------------|-----------|
| Spec.<br>No. | Item<br>No. | Description                                                   | Qty | Units                           | Mate<br>\$/Unit      | erials<br>Total | Instal<br>\$/Unit | llation<br>Total | Sub-c<br>\$/Unit         | ontractor<br>Total                  | Total     |
|              |             |                                                               |     |                                 |                      |                 |                   |                  |                          |                                     |           |
|              |             | Connection Piping appurtenances                               | 1   | LS                              | 500.00               | 500             | 500.00            | 500              |                          |                                     | 1,000     |
|              |             | 4" PVC Pipeline                                               | 200 | LF                              | 8.00                 | 1,600           | 17.00             | 3,400            |                          |                                     | 5,000     |
|              |             | Paving Removal                                                | 33  | SY                              |                      |                 | 10.00             | 333              |                          |                                     | 333       |
|              |             | Paving Restoration                                            | 33  | SY                              |                      |                 |                   |                  | 75                       | 2,500                               | 2,500     |
|              |             | Landscaping Restoration                                       | 33  | LS                              |                      |                 |                   |                  | 20                       | 667                                 | 667       |
|              |             | Cross Connection Testing                                      | 1   | LS                              |                      | -               |                   |                  | 1,000                    | 1,000                               | 1,000     |
|              |             | Subtotals                                                     |     |                                 |                      | 2100.00         |                   | 4233.33          |                          | 4166.67                             | 10500.00  |
|              |             | Division 1 Costs                                              | @   | 10%                             |                      | 210.00          |                   | 423.33           |                          | 416.67                              | 1050.00   |
|              |             | Subtotals                                                     |     |                                 |                      | 2310.00         |                   | 4656.67          |                          | 4583.33                             | 11550.00  |
|              |             | Taxes - Materials Costs                                       | @   | 8.75%                           |                      | 202.13          |                   |                  |                          |                                     | 202.13    |
|              |             | Subtotals                                                     |     |                                 |                      | 2512.13         |                   | 4656.67          |                          | 4583.33                             | 11752.13  |
|              |             | Taxes - Labor Costs                                           | @   | 5.00%                           |                      |                 |                   | 232.83           |                          |                                     | 232.83    |
|              |             | Subtotals                                                     |     |                                 |                      | 2512.13         |                   | 4889.50          |                          | 4583.33                             | 11984.96  |
|              |             | Contractor Markup for Sub                                     | @   | 12%                             |                      |                 |                   |                  |                          | 550.00                              | 550.00    |
|              |             | Subtotals                                                     |     |                                 |                      | 2512.13         |                   | 4889.50          |                          | 5133.33                             | 12534.96  |
|              |             | Contractor OH&P                                               | @   | 15%                             |                      | 376.82          |                   | 733.43           |                          |                                     | 1110.24   |
|              |             | Subtotals                                                     |     |                                 |                      | 2888.94         |                   | 5622.93          |                          | 5133.33                             | 13645.20  |
|              |             | Estimate Contingency                                          | @   | 30%                             |                      |                 |                   |                  |                          |                                     | 4093.56   |
|              |             | Subtotals                                                     |     |                                 |                      |                 |                   |                  |                          |                                     | 17738.76  |
|              |             | Escalate to Midpoint of Construct                             | @   | 3%                              |                      |                 |                   |                  |                          |                                     |           |
|              |             | Estimated Bid Cost                                            |     |                                 |                      |                 |                   |                  |                          |                                     | 17,738.76 |
|              |             | Total Estimate                                                |     |                                 |                      |                 |                   |                  |                          |                                     | 18,000    |
|              |             |                                                               |     |                                 |                      |                 |                   |                  |                          |                                     |           |

· · · · · ·

Estimate Accuracy +50% -30%

| Estimated | Estimated Range of Probable Cost |          |  |  |  |  |  |  |  |  |  |  |
|-----------|----------------------------------|----------|--|--|--|--|--|--|--|--|--|--|
| +50%      | Total Est.                       | -30%     |  |  |  |  |  |  |  |  |  |  |
| \$27,000  | \$18,000                         | \$12,600 |  |  |  |  |  |  |  |  |  |  |

#### KENNEDY/JENKS CONSULTANTS Prepared By:

 Date Prepared:
 JLH

 K/J Proj. No.
 1670011\*00

Project: Rancho Murrieta

#### Building, Area: Recycled Water SCADA Control System

| Estimate     | Typ∉ | Conceptual<br>Preliminary (w/o plans)                    |     | Construc | ction<br>Order  |                |                    | Months | C<br>Esc<br>s to Midpoint | urrent at ENR _<br>alated to ENR _<br>of Construct _ |        |
|--------------|------|----------------------------------------------------------|-----|----------|-----------------|----------------|--------------------|--------|---------------------------|------------------------------------------------------|--------|
| Creat        |      | Design Development @                                     |     | % Comp   | lete            | -iele          | Inetal             | ation  | Cub                       |                                                      |        |
| Spec.<br>No. | No.  | Description                                              | Qty | Units    | Mate<br>\$/Unit | riais<br>Total | Instail<br>\$/Unit | Total  | Sub-c<br>\$/Unit          | ontractor<br>Total                                   | Total  |
| Buildout:    |      |                                                          |     |          |                 |                |                    |        |                           |                                                      |        |
|              |      | Bass Lake Flow Control Valve 8" Actuated Butterfly Valve | 1   | EA       | 4,300.00        | 4,300          | 4,500.00           | 4,500  |                           |                                                      | 8,800  |
|              |      | Bass Lake Tank Altitude Valve 8"                         | 1   | EA       | 800.00          | 800            | 500.00             | 500    |                           |                                                      | 1,300  |
|              |      | Power Drop / Meter at Bass Lake                          | 1   | EA       |                 |                |                    |        | 25,000                    | 25,000                                               | 25,000 |
|              |      | Power to Above Items                                     | 2   | EA       |                 |                |                    |        | 5,000                     | 10,000                                               | 10,000 |
|              |      | Cell Communication                                       | 1   | LOC      |                 |                |                    |        | 5,000                     | 5,000                                                | 5,000  |
|              |      |                                                          |     |          |                 |                |                    |        |                           |                                                      |        |
|              |      | Subtotals                                                |     |          |                 | 5,100          |                    | 5,000  |                           | 40,000                                               | 50,100 |
|              |      | Division 1 Costs                                         | @   | 10%      |                 | 510            |                    | 500    |                           | 4,000                                                | 5,010  |
|              |      | Subtotals                                                |     |          |                 | 5,610          |                    | 5,500  |                           | 44,000                                               | 55,110 |
|              |      | Taxes - Materials Costs                                  | @   | 8.75%    |                 | 491            |                    |        |                           |                                                      | 491    |
|              |      | Subtotals                                                |     |          |                 | 6,101          |                    | 5,500  |                           | 44,000                                               | 55,601 |
|              |      | Taxes - Labor Costs                                      | @   | 5.00%    |                 |                |                    | 275    |                           |                                                      | 275    |
|              |      | Subtotals                                                |     |          |                 | 6,101          |                    | 5,775  |                           | 44,000                                               | 55,876 |
|              |      | Contractor Markup for Sub                                | @   | 12%      |                 |                |                    |        |                           | 5,280                                                | 5,280  |
|              |      | Subtotals                                                |     |          |                 | 6,101          |                    | 5,775  |                           | 49,280                                               | 61,156 |
|              |      | Contractor OH&P                                          | @   | 15%      |                 | 915            |                    | 866    |                           |                                                      | 1,781  |
|              |      | Subtotals                                                |     |          |                 | 7,016          |                    | 6,641  |                           | 49,280                                               | 62,937 |
|              |      | Estimate Contingency                                     | @   | 30%      |                 |                |                    |        |                           |                                                      | 18,881 |
|              |      | Subtotals                                                |     |          |                 |                |                    |        |                           |                                                      | 81,818 |
|              |      | Escalate to Midpoint of Construct                        | @   | 3%       |                 |                |                    |        |                           |                                                      | -      |
|              |      | Estimated Bid Cost                                       |     |          |                 |                |                    |        |                           |                                                      | 81,818 |
|              |      | Total Estimate                                           |     |          |                 |                |                    |        |                           |                                                      | 82,000 |
|              |      |                                                          |     |          |                 |                |                    |        |                           |                                                      |        |

| Estimate Accuracy |           |  |  |  |  |  |
|-------------------|-----------|--|--|--|--|--|
| Eotimato          | rioouracy |  |  |  |  |  |
| +50%              | -30%      |  |  |  |  |  |
|                   |           |  |  |  |  |  |

| Estimated | Estimated Range of Probable Cost |          |  |  |  |  |  |  |  |  |  |
|-----------|----------------------------------|----------|--|--|--|--|--|--|--|--|--|
| +50%      | Total Est.                       | -30%     |  |  |  |  |  |  |  |  |  |
| \$123,000 | \$82,000                         | \$57,400 |  |  |  |  |  |  |  |  |  |

#### Project: Rancho Murrieta

Building, Area: Disinfection Facilities Upgrade

| Estimate Type |      | Conceptual<br>Preliminary (w/o plans)<br>Design Development @ |       | ] Construc<br>] Change (<br>% Compl | tion<br>Order |                                       |              | Month   | C<br>Esc<br>is to Midpoin | urrent at ENR<br>alated to ENR<br>t of Construct |          |
|---------------|------|---------------------------------------------------------------|-------|-------------------------------------|---------------|---------------------------------------|--------------|---------|---------------------------|--------------------------------------------------|----------|
| Spec.         | Item | Description                                                   | •     |                                     | Materials     |                                       | Installation |         | Sub-contractor            |                                                  | <b>.</b> |
| NO.           | NO.  | Description                                                   | Qty   | Units                               | \$/Unit       | Iotai                                 | \$/Unit      | Iotai   | \$/Unit                   | Iotai                                            | lotal    |
|               |      | Demo Existing 20" CCP                                         | 6 600 |                                     |               | <b>├───</b> ┦                         | 8.00         | 52 800  |                           | <u> </u> '                                       | 52 800   |
|               |      | Demo Concrete Anchors for CCP                                 | 207   |                                     |               |                                       | 150.00       | 30,979  |                           | ·'                                               | 30 979   |
|               |      | New Chlorine Contact Tank :                                   |       |                                     |               | + +                                   | 100.00       | 00,070  |                           | ·'                                               | 00,070   |
| 1             |      | Fxcavation                                                    | 1.441 | CY                                  |               | +                                     | 10.00        | 14.406  |                           | ·'                                               | 14,406   |
|               |      | Shoring                                                       | 2.440 | VSF                                 | 10.00         | 24,400                                | 12.00        | 29.280  |                           | ·'                                               | 53.680   |
|               |      | Base Slab                                                     | 92    | CY                                  | 250.00        | 23.111                                | 200.00       | 18.489  |                           | ·                                                | 41.600   |
|               |      | Tank Exterior Walls                                           | 136   | CY                                  | 300.00        | 40,667                                | 400.00       | 54,222  | ·                         | 1                                                | 94,889   |
|               |      | Tank Center Walls                                             | 71    | CY                                  | 300.00        | 21,333                                | 400.00       | 28,444  |                           | 1                                                | 49,778   |
|               |      | Backfill                                                      | 516   | CY                                  |               | · · · · · · · · · · · · · · · · · · · | 5.00         | 2,581   |                           | 1                                                | 2,581    |
| 1             |      | Chlorine Injection Systems                                    |       |                                     |               | ļ <b>ļ</b>                            |              | i i i   |                           | 1                                                |          |
|               |      |                                                               |       |                                     |               | 1                                     |              | í Í     |                           | 1                                                |          |
|               |      | Misc Sitework                                                 | 1     |                                     |               |                                       | 40,000.00    | 40,000  |                           | 1                                                | 40,000   |
|               |      | Subtotals                                                     |       | <u> </u>                            |               | 109,511                               |              | 271,201 |                           | · · · ·                                          | 380,713  |
|               |      | Division 1 Costs                                              | @     | 10%                                 |               | 10,951                                |              | 27,120  |                           | _                                                | 38,071   |
|               |      | Subtotals                                                     |       |                                     |               | 120,462                               |              | 298,322 |                           | - '                                              | 418,784  |
|               |      | Taxes - Materials Costs                                       | @     | 8.75%                               |               | 10,540                                |              |         |                           |                                                  | 10,540   |
|               |      | Subtotals                                                     |       |                                     |               | 131,003                               |              | 298,322 |                           |                                                  | 429,324  |
|               |      | Taxes - Labor Costs                                           | @     | 5.00%                               |               |                                       |              | 14,916  |                           |                                                  | 14,916   |
|               |      | Subtotals                                                     |       |                                     |               | 131,003                               |              | 313,238 |                           |                                                  | 444,240  |
|               |      | Contractor Markup for Sub                                     | @     | 12%                                 |               |                                       |              |         |                           |                                                  | -        |
|               |      | Subtotals                                                     |       |                                     |               | 131,003                               |              | 313,238 |                           |                                                  | 444,240  |
|               |      | Contractor OH&P                                               | @     | 15%                                 |               | 19,650                                |              | 46,986  | <u> </u>                  |                                                  | 66,636   |
|               |      | Subtotals                                                     |       |                                     |               | 150,653                               |              | 360,223 | I                         | '                                                | 510,876  |
|               |      | Estimate Contingency                                          | @     | 30%                                 |               |                                       |              |         |                           |                                                  | 153,263  |
|               |      | Subtotals                                                     |       |                                     |               |                                       |              |         | <u> </u>                  |                                                  | 664,139  |
|               |      | Escalate to Midpoint of Construct                             | @     | 3%                                  |               |                                       |              |         |                           |                                                  | -        |
|               |      | Estimated Bid Cost                                            |       | 1                                   |               |                                       |              |         |                           |                                                  | 664,139  |
| 1             |      | Total Estimate                                                |       |                                     |               |                                       |              |         |                           | ,                                                | 665,000  |

· · · · ·

#### Estimate Accuracy +50% -30%

Date Printed 6/30/2017

## **KENNEDY/JENKS CONSULTANTS**

 Prepared By:

 Date Prepared:
 JLH

 K/J Proj. No.
 1670011\*00

| Estimated Range of Probable Cost |            |           |  |  |  |  |  |
|----------------------------------|------------|-----------|--|--|--|--|--|
| +50%                             | Total Est. | -30%      |  |  |  |  |  |
| \$997,500                        | \$665,000  | \$465,500 |  |  |  |  |  |

#### Project: Rancho Murrieta

Building, Area:

North Golf Course Conveyance System Rehabilitation

#### **KENNEDY/JENKS CONSULTANTS**

| Prepared By:   |            |
|----------------|------------|
| Date Prepared: | JLH        |
| K/J Proj. No.  | 1670011*00 |

| Estimate Type    | »:         | Conceptual<br>Preliminary (w/o plans)<br>Design Development @ |                  | ] Construc<br>] Change (<br>_ % Compl | ction<br>Order<br>lete |                     |                   | Month              | C<br>Esc<br>is to Midpoint | urrent at ENR _<br>alated to ENR _<br>t of Construct _ |                       |
|------------------|------------|---------------------------------------------------------------|------------------|---------------------------------------|------------------------|---------------------|-------------------|--------------------|----------------------------|--------------------------------------------------------|-----------------------|
| Spec.            | Item       |                                                               |                  |                                       | Mate                   | erials              | Instal            | lation             | Sub-c                      | ontractor                                              |                       |
| Ňo.              | No.        | Description                                                   | Qty              | Units                                 | \$/Unit                | Total               | \$/Unit           | Total              | \$/Unit                    | Total                                                  | Total                 |
|                  |            |                                                               |                  |                                       |                        |                     |                   |                    |                            |                                                        |                       |
| Wastewater Recla | imamtion F | Plant to Bass Lake - 11,200 ft, of which 9,00                 | 0 ft will be imp | roved. WWR                            | P to Yellow Bridg      | e (12-in, 4,300 ft) | to be replaced. R | emaining pipe is a | assumed to be 8-i          | nch; 1/3 of which is                                   | to be replaced, the r |
|                  |            |                                                               | 4                |                                       |                        |                     | F 000 00          | F 000              | 05.000                     | 05.000                                                 | 00.000                |
|                  |            | Condition Assessment 12" AC Pip                               | 1                | LS                                    | 04.00                  | 400.000             | 5,000.00          | 5,000              | 25,000                     | 25,000                                                 | 30,000                |
|                  |            | 12" PVC Pipe (100% Replaced)                                  | 4,300            |                                       | 24.00                  | 103,200             | 26.00             | 111,800            |                            |                                                        | 215,000               |
|                  |            | 12" Fittings                                                  | 36               | EA                                    | 635.00                 | 22,754              | 125.00            | 4,479              |                            |                                                        | 27,233                |
|                  |            | Connection to Existing Pipes                                  | 2                | EA                                    | 500.00                 | 1,000               | 500.00            | 1,000              | 50                         |                                                        | 2,000                 |
|                  |            | 12 PVC Pipe ( CIPP lined)                                     | 4 200            |                                       |                        |                     | 8.00              | 24.400             | 59                         |                                                        | 24.400                |
|                  |            | Remove Existing Pipe                                          | 4,300            |                                       |                        |                     | 8.00              | 34,400             |                            |                                                        | 34,400                |
|                  |            | Paving Renioval                                               | 1,911            | ST                                    |                        |                     | 10.00             | 19,111             | 75                         | 140.000                                                | 142 222               |
|                  |            | Troffic Controlo                                              | 1,911            |                                       | 200.00                 | 9,600               | 1 0 1 0 0 0       | 44 700             | 75                         | 143,333                                                | 52 220                |
|                  |            |                                                               | 43               |                                       | 200.00                 | 8,000               | 1,040.00          | 44,720             |                            |                                                        | 55,520                |
|                  |            | Condition Assessment 8" AC Pipe                               | 1                | LS                                    |                        |                     | 10,000.00         | 10,000             | 45,000                     | 45,000                                                 | 55,000                |
|                  |            | 8" PVC Pipe Replaced                                          | 1,900            | IF                                    | 14.00                  | 26,600              | 22.00             | 41.800             |                            |                                                        | 68,400                |
|                  |            | Remove Existing Pipe                                          | 1,900            | LF                                    | 1 1.00                 | 20,000              | 8.00              | 15,200             |                            |                                                        | 15,200                |
|                  |            | Paving Removal                                                | 844              | SY                                    |                        |                     | 10.00             | 8.444              |                            |                                                        | 8,444                 |
|                  |            | Paving Replacement over trench                                | 844              | SY                                    |                        |                     |                   |                    | 75                         | 63.333                                                 | 63.333                |
|                  |            | Traffic Controls                                              | 19               | DY                                    | 200.00                 | 3,800               | 1,040.00          | 19,760             | -                          |                                                        | 23,560                |
|                  |            | 8" PVC Pipe (CIPP Repair )                                    | 3,800            | LF                                    |                        |                     |                   |                    | 55                         | 209,000                                                | 209,000               |
|                  |            |                                                               |                  |                                       |                        |                     |                   |                    |                            |                                                        |                       |
|                  |            | Subtotals                                                     |                  |                                       |                        | 165954.17           |                   | 315,715            |                            | 485,667                                                | 967,336               |
|                  |            | Division 1 Costs                                              | @                | 10%                                   |                        | 16595.42            |                   | 31,571             |                            | 48,567                                                 | 96,734                |
|                  |            | Subtotals                                                     |                  |                                       |                        | 182549.58           |                   | 347,286            |                            | 534,233                                                | 1,064,069             |
|                  |            | Taxes - Materials Costs                                       | @                | 8.75%                                 |                        | 15973.09            |                   |                    |                            |                                                        | 15,973                |
|                  |            | Subtotals                                                     |                  |                                       |                        | 198522.67           |                   | 347,286            |                            | 534,233                                                | 1,080,042             |
|                  |            | Taxes - Labor Costs                                           | @                | 5.00%                                 |                        |                     |                   | 17,364             |                            |                                                        | 17,364                |
|                  |            | Subtotals                                                     |                  |                                       |                        | 198522.67           |                   | 364,651            |                            | 534,233                                                | 1,097,407             |
|                  |            | Contractor Markup for Sub                                     | @                | 12%                                   |                        |                     |                   |                    |                            | 64,108                                                 | 64,108                |
|                  |            | Subtotals                                                     |                  |                                       |                        | 198522.67           |                   | 364,651            |                            | 598,341                                                | 1,161,515             |
|                  |            | Contractor OH&P                                               | @                | 15%                                   |                        | 29778.40            |                   | 54,698             |                            |                                                        | 84,476                |
|                  |            | Subtotals                                                     |                  |                                       |                        | 228301.07           |                   | 419,348            |                            | 598,341                                                | 1,245,990             |
|                  |            | Estimate Contingency                                          | @                | 30%                                   |                        |                     |                   |                    |                            |                                                        | 373,797               |

| Subtotals                              |  | 1,619,788 |
|----------------------------------------|--|-----------|
| Escalate to Midpoint of Construct @ 3% |  | -         |
| Estimated Bid Cost                     |  | 1,619,788 |
| Total Estimate                         |  | 1,620,000 |
|                                        |  |           |

s s s s

| Estimate Accuracy |      |  |  |  |
|-------------------|------|--|--|--|
| +50%              | -30% |  |  |  |

| Estimated Range of Probable Cost |                 |             |  |  |  |  |  |  |  |
|----------------------------------|-----------------|-------------|--|--|--|--|--|--|--|
| +50%                             | +50% Total Est. |             |  |  |  |  |  |  |  |
| \$2,430,000                      | \$1,620,000     | \$1,134,000 |  |  |  |  |  |  |  |

Project: Rancho Murrieta

Building, Area: Bass Lake Recyled Water Storage Tank

| KENNEDY/JENKS | CONSULTANTS |
|---------------|-------------|
|               | CONCOLIANTO |

| Prepared By:   |            |
|----------------|------------|
| Date Prepared: | JLH        |
| K/J Proj. No.  | 1670011*00 |

| Estimate Type: |      | Conceptual<br>Preliminary (w/o plans)<br>Design Development @ |          | ]Construc<br>]Change (<br>_ % Compl | tion<br>Drder<br>ete |        |            | Month   | C<br>Esc<br>s to Midpoin | urrent at ENR _<br>alated to ENR _<br>t of Construct _ |           |
|----------------|------|---------------------------------------------------------------|----------|-------------------------------------|----------------------|--------|------------|---------|--------------------------|--------------------------------------------------------|-----------|
| Spec.          | ltem | Description                                                   | 0.       | Unite                               | Mate                 | erials | Instal     | ation   | Sub-c                    | contractor                                             | Tatal     |
| NO.            | NO.  | Description                                                   | Qty      | Units                               | \$/Unit              | lotal  | \$/Unit    | lotal   | \$/Unit                  | l otal                                                 | lotal     |
|                |      | Site Prep                                                     | 1        | IS                                  |                      |        | 10.000.00  | 10.000  |                          |                                                        | 10.000    |
|                |      |                                                               |          |                                     |                      |        |            |         |                          |                                                        | ,         |
|                |      | New Storage Tank 500,000 gal                                  | 1        | EA                                  |                      |        |            |         | 450,000                  | 450,000                                                | 450,000   |
|                |      | Foundation                                                    | 141      | CY                                  | 250.00               | 35,180 | 250.00     | 35,180  | ,                        | , i                                                    | 70,359    |
|                |      | Overflow Piping                                               | 1        | LS                                  |                      |        | 10,000.00  | 10,000  |                          |                                                        | 10,000    |
|                |      |                                                               |          |                                     |                      |        |            |         |                          |                                                        |           |
|                |      | Misc Sitework:                                                | 1        | ALL                                 |                      |        | 195,000.00 | 195,000 |                          |                                                        | 195,000   |
|                |      |                                                               |          |                                     |                      |        |            |         |                          |                                                        |           |
|                |      | Subtotals                                                     | -        |                                     |                      | 35,180 |            | 250,180 |                          | 450,000                                                | 735,359   |
|                |      | Division 1 Costs                                              | @        | 10%                                 |                      | 3,518  |            | 25,018  |                          | 45,000                                                 | 73,536    |
|                |      | Subtotals                                                     |          |                                     |                      | 38,698 |            | 275,198 |                          | 495,000                                                | 808,895   |
|                |      | Taxes - Materials Costs                                       | <u>@</u> | 8.75%                               |                      | 3,386  |            |         |                          |                                                        | 3,386     |
|                |      | Subtotals                                                     |          |                                     |                      | 42,084 |            | 275,198 |                          | 495,000                                                | 812,281   |
|                |      | Taxes - Labor Costs                                           | @        | 5.00%                               |                      |        |            | 13,760  |                          |                                                        | 13,760    |
|                |      | Subtotals                                                     | -        |                                     |                      | 42,084 |            | 288,957 |                          | 495,000                                                | 826,041   |
|                |      | Contractor Markup for Sub                                     | @        | 12%                                 |                      |        |            |         |                          | 59,400                                                 | 59,400    |
|                |      | Subtotals                                                     |          |                                     |                      | 42,084 |            | 288,957 |                          | 554,400                                                | 885,441   |
|                |      | Contractor OH&P                                               | @        | 15%                                 |                      | 6,313  |            | 43,344  |                          |                                                        | 49,656    |
|                |      | Subtotals                                                     |          |                                     |                      | 48,396 |            | 332,301 |                          | 554,400                                                | 935,097   |
|                |      | Estimate Contingency                                          | @        | 30%                                 |                      |        |            |         |                          |                                                        | 280,529   |
|                |      | Subtotals                                                     |          |                                     |                      |        |            |         |                          |                                                        | 1,215,626 |
|                |      | Escalate to Midpoint of Construct                             | @        | 3%                                  |                      |        |            |         |                          |                                                        | -         |
|                |      | Estimated Bid Cost                                            |          |                                     |                      |        |            |         |                          |                                                        | 1,215,626 |
|                |      | Total Estimate                                                |          |                                     |                      |        |            |         |                          |                                                        | 1,216,000 |
|                |      |                                                               |          |                                     |                      |        |            |         |                          |                                                        |           |

· · · · · ·

| Estimate | Accuracy |
|----------|----------|
| +50%     | -30%     |

| Estimated Range of Probable Cost |             |           |  |  |  |  |  |  |  |  |
|----------------------------------|-------------|-----------|--|--|--|--|--|--|--|--|
| +50%                             | Total Est.  | -30%      |  |  |  |  |  |  |  |  |
| \$1,824,000                      | \$1,216,000 | \$851,200 |  |  |  |  |  |  |  |  |

## **KENNEDY/JENKS CONSULTANTS** Prepared By:

Project: Rancho Murrieta

Building, Area: Bass Lake Booster Pump Station

| Estimate Type: Conceptual |      | Conceptual<br>Preliminary (w/o plans)<br>Design Development @ |        | ] Construe<br>] Change<br>_ % Comp | ction<br>Order<br>lete |         | Current at ENR<br>Escalated to ENR<br>Months to Midpoint of Construct |         |         |           |         |
|---------------------------|------|---------------------------------------------------------------|--------|------------------------------------|------------------------|---------|-----------------------------------------------------------------------|---------|---------|-----------|---------|
| Spec.                     | ltem |                                                               |        |                                    | Mate                   | rials   | Instal                                                                | lation  | Sub-c   | ontractor |         |
| Ňo.                       | No.  | Description                                                   | Qty    | Units                              | \$/Unit                | Total   | \$/Unit                                                               | Total   | \$/Unit | Total     | Total   |
|                           |      | Misc Sitework                                                 | 1      | LS                                 |                        |         | 60,000.00                                                             | 60,000  |         |           | 60,000  |
|                           |      |                                                               |        |                                    |                        |         |                                                                       |         |         |           |         |
|                           |      |                                                               |        |                                    |                        |         |                                                                       |         |         |           |         |
|                           |      | Pump Station Foundation(Cans)                                 | 12     | CY                                 | 400.00                 | 4,741   | 400.00                                                                | 4,741   |         |           | 9,481   |
|                           |      | Pump Station SOG                                              | 11     | CY                                 | 250.00                 | 2,778   | 250.00                                                                | 2,778   |         |           | 5,556   |
|                           |      | Generator Slab                                                | 9      | CY                                 | 250.00                 | 2,222   | 250.00                                                                | 2,222   |         |           | 4,444   |
|                           |      | Vertical Turbine Pumps                                        | 2      | EA                                 | 34,371.00              | 68,742  | 10,000.00                                                             | 20,000  |         |           | 88,742  |
|                           |      | * Dumpa autoar, na analagura ar huilding                      | adudad | -                                  |                        |         |                                                                       |         |         |           |         |
|                           |      | 10" Butterfly Valve w/ Ext Op                                 |        | E۵                                 | 1 300 00               | 2 600   | 300.00                                                                | 600     |         |           | 3 200   |
|                           |      | 10" ECA                                                       | 2      | EA                                 | 800.00                 | 2,000   | 250.00                                                                | 500     |         |           | 3,200   |
|                           |      |                                                               | 2      |                                    | 000.00                 | 1,000   | 230.00                                                                | 300     |         |           | 2,100   |
|                           |      | Pump Discharge Piping                                         |        |                                    |                        |         |                                                                       |         |         |           |         |
|                           |      | 10" Fittings/ Spools                                          | 12     | EA                                 | 500.00                 | 6.000   | 200.00                                                                | 2,400   |         |           | 8.400   |
|                           |      | 10" Flex Connector                                            | 2      | EA                                 | 800.00                 | 1,600   | 250.00                                                                | 500     |         |           | 2,100   |
|                           |      | 10" Check Valve                                               | 2      | EA                                 | 3.700.00               | 7,400   | 250.00                                                                | 500     |         |           | 7,900   |
|                           |      | 10" Butterfly Valve                                           | 2      | EA                                 | 1.200.00               | 2,400   | 200.00                                                                | 400     |         |           | 2,800   |
|                           |      | 10" FCA                                                       | 2      | EA                                 | 800.00                 | 1.600   | 250.00                                                                | 500     |         |           | 2,100   |
|                           |      | Pipe Supports                                                 | 4      | EA                                 | 150.00                 | 600     | 100.00                                                                | 400     |         |           | 1,000   |
|                           |      | CARV                                                          | 2      | EA                                 | 400.00                 | 800     | 200.00                                                                | 400     |         |           | 1,200   |
|                           |      | Tee                                                           | 2      | EA                                 | 800.00                 | 1,600   | 350.00                                                                | 700     |         |           | 2,300   |
|                           |      | 12" Discharge Header                                          | 20     | LF                                 | 60.00                  | 1,200   | 25.00                                                                 | 500     |         |           | 1,700   |
|                           |      | Pressure Gage                                                 | 2      | EA                                 | 250.00                 | 500     | 150.00                                                                | 300     |         |           | 800     |
|                           |      |                                                               |        |                                    |                        |         |                                                                       |         |         |           |         |
|                           |      |                                                               |        |                                    |                        |         |                                                                       |         |         |           |         |
|                           |      | Power Feed from Street up to Lookout Hill                     | 1      | LS                                 |                        |         |                                                                       |         | 25,000  | 25,000    | 25,000  |
|                           |      | Electrical / I&C                                              | 1      | LS                                 | 10.000.00              |         |                                                                       |         | 80,000  | 80,000    | 80,000  |
|                           |      | VFD's 50HP                                                    | 2      | EA                                 | 10,000.00              | 20,000  | 3,000.00                                                              | 6,000   |         |           | 26,000  |
|                           |      | Emergency Generator 50KW w/ATS and f                          | 1      | EA                                 | 22,000.00              | 22,000  | 6,900.00                                                              | 6,900   |         |           | 28,900  |
|                           |      |                                                               |        |                                    |                        |         |                                                                       |         |         |           |         |
|                           |      | Subtotals                                                     |        |                                    |                        | 148,383 |                                                                       | 110,341 |         | 105,000   | 363,723 |
|                           |      | Division 1 Costs                                              | @      | 10%                                |                        | 14,838  |                                                                       | 11,034  |         | 10,500    | 36,372  |
|                           |      | Subtotals                                                     |        |                                    |                        | 163,221 |                                                                       | 121,375 |         | 115,500   | 400,096 |
|                           |      | Taxes - Materials Costs                                       | @      | 8.75%                              |                        | 14,282  |                                                                       |         |         |           | 14,282  |
|                           |      | Subtotals                                                     |        |                                    |                        | 177,503 |                                                                       | 121,375 |         | 115,500   | 414,378 |
|                           |      | Taxes - Labor Costs                                           | @      | 5.00%                              |                        |         |                                                                       | 6,069   |         |           | 6,069   |

 Date Prepared:
 JLH

 K/J Proj. No.
 1670011\*00

| Subtotals                         |   |            | 177,503 | 127,444 | 115,500 | 420,446 |
|-----------------------------------|---|------------|---------|---------|---------|---------|
| Contractor Markup for Sub         | @ | 12%        |         |         | 13,860  | 13,860  |
| Subtotals                         |   |            | 177,503 | 127,444 | 129,360 | 434,306 |
| Contractor OH&P                   | @ | 15%        | 26,625  | 19,117  |         | 45,742  |
| Subtotals                         |   |            | 204,128 | 146,560 | 129,360 | 480,048 |
| Estimate Contingency              | @ | 30%        |         |         |         | 144,015 |
| Subtotals                         |   |            |         |         |         | 624,063 |
| Escalate to Midpoint of Construct | @ | 3%         |         |         |         | -       |
| Estimated Bid Cost                |   |            |         |         |         | 624,063 |
| Total Estimate                    |   | <u>.</u> . |         |         |         | 625,000 |
|                                   |   |            |         |         |         |         |

Estimate Accuracy +50% -30%

| Estimated Range of Probable Cost |                 |           |  |  |  |  |  |  |  |
|----------------------------------|-----------------|-----------|--|--|--|--|--|--|--|
| +50%                             | +50% Total Est. |           |  |  |  |  |  |  |  |
| \$937,500                        | \$625,000       | \$437,500 |  |  |  |  |  |  |  |

#### **KENNEDY/JENKS CONSULTANTS**

Project: Rancho Murrieta

Building, Area: Seasonal Storage Reservior

| Preliminary (w/o plans)<br>beign Development @Money Order<br>% CompleteMonths to Midpoint of ConstructSpec.ItemDescriptionQtyUnitsS/UnitTotalSub-constructTotalSub-constructTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotal <th< th=""><th>Estimate Type</th><th>:</th><th>Conceptual</th><th></th><th>Construc</th><th>tion</th><th></th><th></th><th></th><th>C<br/>Esc</th><th>urrent at ENR<br/>alated to ENR</th><th></th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Estimate Type | :    | Conceptual                          |           | Construc | tion    |           |           |           | C<br>Esc     | urrent at ENR<br>alated to ENR |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|-------------------------------------|-----------|----------|---------|-----------|-----------|-----------|--------------|--------------------------------|-----------|
| Design Development @         % Complete           Spec.<br>No.         Item<br>No.         Description         Qty         Units         S/Unit         Total         Sub-contractor<br>Total         Total         Total           No.         Site Prep         1         LS         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000         30,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |      | Preliminary (w/o plans)             |           | Change ( | Order   |           |           | Months    | s to Midpoin | t of Construct                 |           |
| Spec.         Item<br>No.         Description         Qty         Units         Materials<br>\$/Unit         Installation<br>Total         Installation<br>\$/Unit         Sub-contractor<br>Total         Total           Site Prep         1         LS         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0         30,000.0 </th <th></th> <th>Ē</th> <th>Design Development @</th> <th></th> <th>% Compl</th> <th>ete</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | Ē    | Design Development @                |           | % Compl  | ete     |           |           |           |              |                                |           |
| No.DescriptionQtyUnits\$/UnitTotal\$/UnitTotal\$/UnitTotal\$/UnitTotalTotalImport Fill Backfill with Compact37,519CY20.0075,03730.00030.00010.63.363Import Fill Backfill with Compact37,519CY20.0075,0371.001,053,363Import Fill Backfill with Compact37,519CY20.0075,03743.0011,256Import Fill Backfill with Compact37,519CY20.0075,03743.0011,256Import Fill Backfill with Compact37,519CY20.0075,03741.0001,053,363Import Fill Backfill with Compact37,519CY20.0075,037Import Fill Backfill with Compact80,000Import Fill Backfill with CompactImport Fil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Spec.         | Item |                                     |           | i i      | Mate    | erials    | Insta     | llation   | Sub-c        | ontractor                      |           |
| Site Prep         1         LS         30,000         30,000         30,000           Cut         CCV         5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No.           | No.  | Description                         | Qty       | Units    | \$/Unit | Total     | \$/Unit   | Total     | \$/Unit      | Total                          | Total     |
| Image: Cut         Image: Cut <thimage: cut<="" th="">         Image: Cut         Image: C</thimage:>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |      | Site Prep                           | 1         | LS       |         |           | 30,000.00 | 30,000    |              |                                | 30,000    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |      |                                     |           |          |         |           |           |           |              |                                |           |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |      | Cut                                 |           | CY       |         |           | 5.00      |           |              |                                |           |
| Grading       1,053,363       SY       1.00       1,053,363       1,053,363         Paving       Paving       1       1       1       1       1         Stie Lighting       1       1       1       1       1       1         Site Lighting       1       1       1       1       1       1       1       1         Site Lighting       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |      | Import Fill & Backfill with Compact | 37,519    | CY       | 20.00   | 750,374   | 3.00      | 112,556   |              |                                | 862,931   |
| Stormdrainage       Paving       Image: Stormdrainage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |      | Grading                             | 1,053,363 | SY       |         |           | 1.00      | 1,053,363 |              |                                | 1,053,363 |
| Paving     Paving <td></td> <td></td> <td>Stormdrainage</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |      | Stormdrainage                       |           |          |         |           |           |           |              |                                |           |
| Site Lighting         Image: Site Ligh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |      | Paving                              |           |          |         |           |           |           |              |                                |           |
| Fencing         Fencing <t< td=""><td></td><td></td><td>Site Lighting</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |      | Site Lighting                       |           |          |         |           |           |           |              |                                |           |
| Image: Connection Piping     Image: Connect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |      | Fencing                             |           |          |         |           |           |           |              |                                |           |
| Overflow Piping         Image: Construct of the second |               |      | Connection Piping                   |           |          |         |           |           |           |              |                                |           |
| Image: Construct of Construct         Image: Construct <thimage: construct<="" th=""> <thimage< td=""><td></td><td></td><td>Overflow Piping</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thimage<></thimage:>                                                                                                                                                                                                                                                                                                                                                                                |               |      | Overflow Piping                     |           |          |         |           |           |           |              |                                |           |
| Electrical Service     Image: Subtrals     T50,374     1,195,919     Image: Subtrals       Subtrals     @     10%     750,374     1,195,919     -     1,946,293       Division 1 Costs     @     10%     750,377     119,592     -     194,629       Subtrals     @     10%     750,377     119,592     -     194,629       Subtrals     @     875%     72,224     -     2,140,923       Taxes - Materials Costs     @     8.75%     72,224     -     2,213,146       Subtrals     -     897,635     1,315,511     -     2,213,146       Taxes - Labor Costs     @     5.00%     -     65,776     -     65,776       Contractor Markup for Sub     @     12%     -     2,278,922     -     -     2,278,922       Contractor OH&P     @     15%     134,645     207,193     -     2,278,922       Contractor OH&P     @     1,032,281     1,588,480     -     2,620,760       Subtrals     -     1,032,281     1,588,480     -     2,620,760       Subtrals     -     1,032,281     1,588,480     -     2,620,760       Subtrals     -     1,032,281     1,588,480     -     2,620,760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |      |                                     |           |          |         |           |           |           |              |                                |           |
| Subtotals         750,374         1,195,919         -         1,946,293           Division 1 Costs         @         10%         750,37         119,502         -         194,629           Subtotals         825,412         1,315,511         -         2,140,923           Taxes - Materials Costs         @         8.75%         72,224         -         2,213,146           Subtotals         897,635         1,315,511         -         2,213,146           Taxes - Labor Costs         @         5.00%         -         65,776         65,776           Subtotals         897,635         1,381,287         -         2,278,922           Contractor Markup for Sub         @         12%         -         -         -           Subtotals         897,635         1,381,287         -         2,278,922           Contractor Markup for Sub         @         12%         -         -         -           Subtotals         1,032,281         1,381,287         -         2,278,922           Contractor OH&P         @         1,032,281         1,588,480         -         2,620,760           Estimate Contingency         @         30%         -         2,620,760         3,406,988 </td <td></td> <td></td> <td>Electrical Service</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |      | Electrical Service                  |           |          |         |           |           |           |              | -                              |           |
| Division 1 Costs         @         10%         750/37         1195/502         -         194/629           Subtotals         825,412         1,315,511         -         2,140,923           Taxes - Materials Costs         @         8.75%         72,224         -         72,224           Subtotals         897,635         1,315,511         -         2,213,146           Taxes - Labor Costs         @         5.00%         -         65,776         -         65,778,922           Contractor Markup for Sub         @         12%         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |      | Subtotals                           |           |          |         | 750 374   |           | 1 195 919 |              | <u> </u>                       | 1 946 293 |
| Subtor         1000         1000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         100000         10000         10000 <th< td=""><td></td><td></td><td>Division 1 Costs</td><td>0</td><td>10%</td><td></td><td>75.037</td><td></td><td>119 592</td><td></td><td></td><td>194 629</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |      | Division 1 Costs                    | 0         | 10%      |         | 75.037    |           | 119 592   |              |                                | 194 629   |
| Taxes - Materials Costs         @         8.75%         72,224         72,224           Subtotals         897,635         1,315,511         -         2,213,146           Taxes - Labor Costs         @         5.00%         65,776         65,776           Subtotals         897,635         1,381,287         -         2,278,922           Contractor Markup for Sub         @         12%         -         -           Subtotals         897,635         1,381,287         -         2,278,922           Contractor Markup for Sub         @         12%         -         -         -           Subtotals         897,635         1,381,287         -         2,278,922           Contractor OH&P         @         15%         134,645         2007,193         341,838           Subtotals         1,032,281         1,588,480         -         2,620,760           Estimate Contingency         @         30%         -         3,406,988           Escalate to Midpoint of Construct         @         3%         -         -           Estimated Bid Cost         -         -         -         -         -           Total Estimate         -         -         -         3,406,988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |      | Subtotals                           | 6         | 1070     |         | 825 412   |           | 1 315 511 |              | -                              | 2 140 923 |
| Indication         Initial and the second of the secon |               |      | Taxes - Materials Costs             | 0         | 8 75%    |         | 72 224    |           | 1,010,011 |              |                                | 72 224    |
| Bottletid         Bottletid <thbottletid< th="">         Bottletid         <th< td=""><td></td><td></td><td>Subtotals</td><td>0</td><td>0.1070</td><td></td><td>897 635</td><td></td><td>1 315 511</td><td></td><td>-</td><td>2 213 146</td></th<></thbottletid<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |      | Subtotals                           | 0         | 0.1070   |         | 897 635   |           | 1 315 511 |              | -                              | 2 213 146 |
| Subtotals       00000       897,635       1,381,287       -       2,278,922         Contractor Markup for Sub       @       12%       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <t< td=""><td></td><td></td><td>Taxes - Labor Costs</td><td>Ø</td><td>5.00%</td><td></td><td>001,000</td><td></td><td>65 776</td><td></td><td>-</td><td>65 776</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |      | Taxes - Labor Costs                 | Ø         | 5.00%    |         | 001,000   |           | 65 776    |              | -                              | 65 776    |
| Contractor Markup for Sub@12% <td></td> <td></td> <td>Subtotals</td> <td>0</td> <td>0.0070</td> <td></td> <td>897 635</td> <td></td> <td>1 381 287</td> <td></td> <td>-</td> <td>2 278 922</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |      | Subtotals                           | 0         | 0.0070   |         | 897 635   |           | 1 381 287 |              | -                              | 2 278 922 |
| Subtotals         897,635         1,381,287         2,278,922           Contractor OH&P         @         15%         134,645         207,193         341,838           Subtotals         1,032,281         1,588,480         2,620,760           Estimate Contingency         @         30%         786,228           Subtotals         1         1,032,281         1,588,480         -           Estimate Contingency         @         30%         786,228         -           Subtotals         -         -         -         -         -           Escalate to Midpoint of Construct         @         3%         -         -         -           Total Estimate         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |      | Contractor Markup for Sub           | @         | 12%      |         | 001,000   |           | .,        |              |                                |           |
| Contractor OH&P         @         15%         134,645         207,193         134,838           Subtotals         1,032,281         1,588,480         -         2,620,760           Estimate Contingency         @         30%         786,228         786,228           Subtotals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |      | Subtotals                           | -         | ,.       |         | 897,635   |           | 1.381.287 |              | -                              | 2,278,922 |
| Subtotals1,032,2811,588,480-2,620,760Estimate Contingency@30%786,228786,228Subtotals3,406,9883,406,988Escalate to Midpoint of Construct@3%Estimated Bid Cost-3,406,988Total Estimate3,406,988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |      | Contractor OH&P                     | @         | 15%      |         | 134.645   |           | 207,193   |              | -                              | 341.838   |
| Estimate Contingency@ 30%786,228Subtotals3,406,988Escalate to Midpoint of Construct@ 3%Estimated Bid Cost-Total Estimate3,406,988Total Estimate-Other Stimate-Other Stimate-<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |      | Subtotals                           | 0         |          |         | 1.032.281 |           | 1.588.480 |              | -                              | 2.620.760 |
| Subtotals     3,406,988       Escalate to Midpoint of Construct     3%       Estimated Bid Cost     -       Total Estimate     3,406,988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |      | Estimate Contingency                | @         | 30%      |         | .,        |           | .,,       |              |                                | 786.228   |
| Escalate to Midpoint of Construct       @       3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |      | Subtotals                           | 2         |          |         |           |           |           |              |                                | 3.406.988 |
| Estimated Bid Cost 3,406,988<br>Total Estimate 3,407,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |      | Escalate to Midpoint of Construct   | @         | 3%       |         |           |           |           |              |                                | -         |
| Total Estimate 3,407,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |      | Estimated Bid Cost                  | -         | - / -    |         |           |           |           |              |                                | 3,406,988 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |      | Total Estimate                      |           |          |         |           |           |           |              |                                | 3,407,000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |      |                                     | <u> </u>  |          |         |           |           |           |              |                                |           |

· · · · · ·

| Estimate | Accuracy |
|----------|----------|
| +50%     | -30%     |

| Estimated Range of Probable Cost |             |             |  |  |  |  |  |  |  |
|----------------------------------|-------------|-------------|--|--|--|--|--|--|--|
| +50%                             | Total Est.  | -30%        |  |  |  |  |  |  |  |
| \$5,110,500                      | \$3,407,000 | \$2,384,900 |  |  |  |  |  |  |  |

#### **KENNEDY/JENKS CONSULTANTS**

 Date Prepared:
 JLH

 K/J Proj. No.
 1670011\*00

Prepared By:

Project: Rancho Murrieta

Building, Area: Van Vleck Sprayfield

|                |             |                                   |       |          |                 |                 |                  |                  | С                | urrent at ENR      |         |
|----------------|-------------|-----------------------------------|-------|----------|-----------------|-----------------|------------------|------------------|------------------|--------------------|---------|
| Estimate Type: |             | Conceptual                        |       | Construe | ction           |                 |                  |                  | Esc              | alated to ENR      |         |
|                |             | Preliminary (w/o plans)           |       | Change   | Order           |                 |                  | Months           | s to Midpoint    | of Construct       |         |
|                | $\square$   | Design Development @              |       | _% Comp  | lete            |                 |                  |                  |                  |                    |         |
| Spec.<br>No.   | Item<br>No. | Description                       | Qty   | Units    | Mate<br>\$/Unit | erials<br>Total | Insta<br>\$/Unit | llation<br>Total | Sub-c<br>\$/Unit | ontractor<br>Total | Total   |
|                |             |                                   |       |          |                 |                 |                  |                  |                  |                    |         |
|                |             | Above ground 12" Irrigation pipe  | 1,000 | LF       | 20.08           | 20,075          | 8.91             | 8,910            |                  |                    | 28,985  |
|                |             | Above ground 8" Irrigation pipe   |       | LF       | 9.90            |                 | 6.27             |                  |                  |                    |         |
|                |             | Above ground 6" Irrigation pipe   | 5,000 | LF       | 6.44            | 32,175          | 5.21             | 26,070           |                  |                    | 58,245  |
|                |             | Above ground 4" Irrigation pipe   | 4,000 | LF       | 3.34            | 13,376          | 4.33             | 17,336           |                  |                    | 30,712  |
|                |             | Above ground 4" Irrigation pipe   |       | LF       | 3.34            |                 | 4.33             |                  |                  |                    |         |
|                |             | K Line Irrigation Systems         | 9     | EA       | 2,600.00        | 23,400          | 320.00           | 2,880            |                  |                    | 26,280  |
|                |             | Valves                            | 5     | EA       | 1,500.00        | 7,500           | 150.00           | 750              |                  |                    | 8,250   |
|                |             |                                   |       |          |                 |                 |                  |                  |                  |                    |         |
|                |             | Subtotals                         |       |          |                 | 96,526          |                  | 55,946           |                  | -                  | 152,472 |
|                |             | Division 1 Costs                  | @     | 10%      |                 | 9,653           |                  | 5,595            |                  | -                  | 15,247  |
|                |             | Subtotals                         |       |          |                 | 106,179         |                  | 61,541           |                  | -                  | 167,719 |
|                |             | Taxes - Materials Costs           | @     | 8.75%    |                 | 9,291           |                  |                  |                  |                    | 9,291   |
|                |             | Subtotals                         |       |          |                 | 115,469         |                  | 61,541           |                  | -                  | 177,010 |
|                |             | Taxes - Labor Costs               | @     | 5.00%    |                 |                 |                  | 3,077            |                  |                    | 3,077   |
|                |             | Subtotals                         |       |          |                 | 115,469         |                  | 64,618           |                  | -                  | 180,087 |
|                |             | Contractor Markup for Sub         | @     | 12%      |                 |                 |                  |                  |                  | -                  | -       |
|                |             | Subtotals                         |       |          |                 | 115,469         |                  | 64,618           |                  | -                  | 180,087 |
|                |             | Contractor OH&P                   | @     | 15%      |                 | 17,320          |                  | 9,693            |                  |                    | 27,013  |
|                |             | Subtotals                         |       |          |                 | 132,790         |                  | 74,310           |                  | -                  | 207,100 |
|                |             | Estimate Contingency              | @     | 30%      |                 |                 |                  |                  |                  |                    | 62,130  |
|                |             | Subtotals                         |       |          |                 |                 |                  |                  |                  |                    | 269,230 |
|                |             | Escalate to Midpoint of Construct | @     | 3%       |                 |                 |                  |                  |                  |                    | -       |
|                |             | Estimated Bid Cost                |       |          |                 |                 |                  |                  |                  |                    | 269,230 |
|                |             | Total Estimate                    |       |          |                 |                 |                  |                  |                  |                    | 270,000 |
|                |             |                                   |       |          |                 |                 |                  |                  |                  |                    |         |

· · · · ·

Estimate Accuracy +50% -30%

| Estimated Range of Probable Cost |            |           |  |  |  |  |  |  |  |
|----------------------------------|------------|-----------|--|--|--|--|--|--|--|
| +50%                             | Total Est. | -30%      |  |  |  |  |  |  |  |
| \$405,000                        | \$270,000  | \$189,000 |  |  |  |  |  |  |  |

## Rancho Murieta -Phase 1 - Proposed Recycled Water Use Conveyance System





## **Initial PS Capacity Estimate from Demands**

- Based on meeting the demands (not including the North and South GC demands) within the 8-hr irrigation window, the pump station capacity needed is **2,955 gpm** (~1480 gpm per pump, assuming 2 duty pumps).
- If Bass Lake Tank is filled outside the 8-hr irrigation period (i.e., during the hours when Bass Lake is filled for the North GC demands), then the Village A, B, and C demands can be removed from this total. The minimum RWPS capacity needed would then be **1,758 gpm** (~880 gpm per pump, assuming 2 duty pumps).
- The capacity of the RWPS is expected to be between 1,760 and 2,960 gpm.

## **Modeling Results**

- Because of pressure limitation of the pipe (criteria is to maintain pressure at Junction N\_3 below 150 psi), the flow rate to Bass Lake and Bass Lake Tank is limited to ~1380 gpm. If filling Bass Lake at 1,052 gpm (North GC demand spread over 16 hrs), the maximum rate of filling Bass Lake Tank is 328 gpm (=1,380 gpm 1,052 gpm) over the 16-hr window.
- Based on the demand downstream of Bass Lake Tank, the tank would need to be filled at a rate of at least 542 gpm during the 8-hr irrigation window. Therefore the RWPS capacity needs to be at least 2,300 gpm (=1,758 gpm + 542 gpm).
- There are two design points for the RWPS, one during the 8-hr irrigation window and one during the 16-hr non-irrigation period. Here are the proposed design points:
  - **2,600 gpm @ 195 ft** for the 8-hr period
  - **1,400 gpm @ 345 ft** for the 16-hr period


AS. BUILT PRAWING LOCATIONS



·ALL FOLDERS ARE LOCATED AT: J:/1670011\*00/9.09/BACKGROUND INFORMATION

RMCSD RW Model.wtg 10/11/2016 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley WaterCAD V8i (SELECTseries 6) [08.11.06.113] Page 1 of 1

- Model - prowing - Exhibit Map



# G3 Engineering, Inc.



480863

06 Dec 2016

Kennedy Jenks Sacramento, CA

Attn: Ryan Young

Project: Rancho Murieta Your reference:

We thank you for your above referenced inquiry, and are pleased to submit our quotation for your consideration.

Quotation number:

Revision:

| ltem number | Service                    | Size                                             | Unit Price | Unit Freight | Qty | Extended Price |  |
|-------------|----------------------------|--------------------------------------------------|------------|--------------|-----|----------------|--|
| 010         | RW Booster PS (1480 GPM)   | 14DOL - 5 stage<br>Product lube - Sump<br>Pump   | \$ 46,167  | \$ 1,000     | 3   | \$ 141,501     |  |
| 011         | Lookout Hill BPS (860 GPM) | 11JKH - 2 stage<br>Product lube - Barrel<br>Pump | \$ 32,002  | \$ 1,000     | 2   | \$ 66,004      |  |
| 012         | Bass Lake BPS (1200 GPM)   | 12JKH - 2 stage<br>Product lube - Barrel<br>Pump | \$ 33,371  | \$ 1,000     | 2   | \$ 68,742      |  |
| Grand Total |                            |                                                  |            |              |     |                |  |

The following is a budget price summary for this quotation. Please see item specific pages for more details.

### COMMENTS:

- a. Pricing is for budget purposes only.
- b. Quote does not include: Installation, Oil or Grease, Valves, Gauges, Anchor Bolts, Soleplates, Spare Parts, Sales Tax.

**SHIPMENT AND FREIGHT TERMS:** Shipment is quoted with freight term: Per the freight term listed in the Comments and Clarifications Section. Partial shipment allowed. Shipment & invoicing will occur upon shipment of equipment. Shipment schedules are based on factory loading at time of order. Should shipment be postponed due to project or site delays Weir Floway will invoice and hold the shipment. Shipment delays exceeding 30 days from the completed date may be subject to reasonable storage charges.

**LEADTIME:** Submittal will be approximately 6-8 weeks after order receipt, contingent upon order acceptance within 10 business days of receipt. Orders will be accepted subject to buyer's credit approval and subject to Weir Floway, Inc.'s Terms and Conditions of Sale.

**Shipment lead time will be approximately 20-22** weeks after written release to manufacture. Shipment lead times are an estimate at time of quotation and subject to change based on quote validity.

**SCOPE OF SUPPLY:** Please note any requirements not outlined in the referenced specification sections as noted on the cover page of this quotation will not be the responsibility of Weir Floway. Any separate specifications made reference to within the noted specifications, whether in part or whole, will not be considered in this quotation.

Weir Floway, Inc. Terms and Conditions of Sale per attached will apply to this quotation. If this is not acceptable, mutually agreeable terms and conditions may be negotiated at time of order placement.



SPECIFICATIONS: Written request. No detailed specifications received.

**VALIDITY:** This offer is valid for 30 days from date issued. Quoted prices will be held firm thru shipment if order is released for manufacture within 60 days from order entry date. Otherwise, a price adjustment may be applied.

In the event that Weir Floway, Inc. is successful in the tender based on this Scope Letter, please issue the formal Purchase Order to the following address:

Weir Floway, Inc. 2494 S. Railroad Ave. Fresno, CA 93706

**PRICE:** Quoted prices will be held firm through shipment if order is released for manufacture within 60 days from order entry date, and approved for shipment within the leadtime quoted. Otherwise, a price adjustment may be applied. Price quoted is for all items purchased and shipped at one time. In the event of a partial order, we will review and adjust the freight price accordingly. Freight charges will be those in effect at time of shipment. Due to volatility in the commodities markets, Weir Floway reserves the right to add a material surcharge on pipe, plate, and other materials in line with the commodity indices. Cost surcharges must be agreed to prior to order acceptance.

**PAYMENT TERMS:** Orders & contracts are subject to approval by Weir Floway prior to acceptance. Standard terms for orders <= \$150,000 are net thirty (30) days from date of invoice. For orders >=\$150,000, progress payments will apply. Weir Floway's standard progress payment schedule is attached for consideration. Start-up services are included and will be invoiced when services are completed or eight (8) weeks from pump shipment which ever occurs first.

**PACKAGING:** For domestic shipment via commercial carrier. Export boxing and documentation requirements are an option with price adder.

**START-UP:** Start-up/assistance by authorized Rep. included. Invoice for start-up services will be issued when services are complete or 8 weeks from pump shipment whichever occurs first.

QUALITY STANDARDS: All our manufacturing locations are ISO 9001-2008 certified.

**TERMS AND CONDITIONS:** This quotation is based solely upon the terms and conditions set forth herein including attachments. They supersede and reject any conflicting terms and conditions of Purchaser. Any other terms and conditions that Purchaser may propose are subject to requotation.

We hope you find our quotation in line with your requirements. However, if you have any questions, please do not hesitate to contact us.

Sincerely,

Mike Burns G3 Engineering, Inc.

CC: Jim Billings, G3 Engineering

# G3 Engineering, Inc.



Richard Plitt, Floway

### G3 Engineering, Inc.



| www.g3engine   | ering.cor               | n            |           |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |                             |                     |               |                            |            |                  |  |
|----------------|-------------------------|--------------|-----------|-----------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------|-----------------------------|---------------------|---------------|----------------------------|------------|------------------|--|
|                |                         |              |           |                 | Pu                  | mn Pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rform                         | ance [                      | )atash                      | eet                 |               |                            |            |                  |  |
| Quality        |                         |              | (         | . In a lun      | Iu                  | inp i c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                             |                             |                     |               | 00000                      |            |                  |  |
| Customer       |                         | : ł          | Kennedy   | / Jenks         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Quote nu                    | Imber                       |                     | : 2           | 80863                      |            |                  |  |
| Customer re    | ference                 | :            |           |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Size                        |                             |                     | :1            | 4DOL                       |            |                  |  |
| Item number    | •                       | : (          | 010       |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Stages                      |                             |                     | : 5           | 5                          |            |                  |  |
| Service        |                         | : F          | RW Boo    | ster PS (14     | 80 GPM)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Based or                    | n curve nu                  | ımber               | :1            | 4DOL 177                   | 70 Rev. 0  | )                |  |
| Quantity       |                         | : 3          | 3         |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Date last                   | saved                       |                     | : (           | )1 Dec 20'                 | 16 11:10   | AM               |  |
|                |                         | C            | peratin   | g Conditio      | ons                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |                             |                     | Liq           | uid                        |            |                  |  |
| Flow, rated    |                         |              |           |                 | : 1,480.            | 0 USgpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                             | Liquid ty                   | ре                          |                     |               | : Wate                     | er - Potab | ble              |  |
| Differential h | ead / pi                | ressure      | , rated ( | requested)      | : 330.0             | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | Additiona                   | al liquid de                | escription          |               | :                          |            |                  |  |
| Differential h | ,<br>lead / pi          | ressure      | rated (   | actual)         | : 331.3             | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | Solids di                   | ameter. m                   | ax '                |               | : 0.00                     | in         |                  |  |
| Suction pres   | sure ra                 | ited / m     | ax        | aoraaly         | · 0.00 /            | 0 00 nsi (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r                             | Solids co                   | ncentratic                  | n hy yoli           | ime           | · 0.00                     | %          |                  |  |
| NPSH availa    | blo rat                 | od           | un        |                 | · Ample             | 0.00 pol.ę                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                             | Solide co                   | ncontratic                  | on by wei           | aht           | . 0.00                     | 70<br>0/   |                  |  |
| Frequency      |                         | cu           |           |                 | · 60 U-             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | Tompora                     |                             |                     | gin           | · 68 0                     | 0 dog E    |                  |  |
| riequency      |                         |              | Deut      |                 | . 00 112            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Fluid dor                   | nuite, max                  | d/max               |               | . 00.0                     |            | 80               |  |
| On a dimeter   |                         |              | Perr      | ormance         | 4770                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             | isily, lated                | 1 / IIIax           |               | . 1.00                     |            | 30               |  |
| Speed, rated   | 1                       |              |           |                 | : 1//0 r            | pm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | VISCOSITY                   | , rated                     | ( I                 |               | : 1.00                     | CP         |                  |  |
| Impeller dian  | neter, ra               | ated         |           |                 | : 8.72 ir           | ١                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | vapor pr                    | essure, ra                  | ited                |               | : 0.00                     | psi.a      |                  |  |
| Impeller dian  | neter, m                | naximur      | n         |                 | : 9.13 ir           | ו                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                             |                             |                     | Mate          | erial                      |            |                  |  |
| Impeller dian  | neter, n                | ninimum      | า         |                 | : 6.81 ir           | ו                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | Material                    | selected                    |                     |               | : Cast                     | t Iron/Bro | nze              |  |
| Efficiency (be | owl / pu                | mp)          |           |                 | : 86.46             | / 85.38 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )                             |                             |                             |                     | Pressu        | e Data                     |            |                  |  |
| NPSH requir    | ed / ma                 | irgin rec    | quired    |                 | : 13.58             | / 0.00 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | Maximun                     | n working                   | pressure            |               | : See                      | the Addit  | ional Data page  |  |
| Ns (imp. eye   | flow) /                 | Nss (im      | ip. eye f | low)            | : 2,908             | / 9,030 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S Units                       | Compon                      | ent pressu                  | ure limit           |               | : See                      | the Addit  | ional Data page  |  |
| MCSF           |                         |              |           |                 | : 412.4             | USgpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | Maximun                     | n allowabl                  | e suction           | pressure      | : N/A                      |            |                  |  |
| Head, maxim    | num, rat                | ted diar     | neter     |                 | : 553.0             | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | Hvdrosta                    | tic test pre                | essure              | •             | : See                      | the Addit  | ional Data page  |  |
| Head rise to   | shutoff                 | (bowl /      | pump)     |                 | : 66.70             | / 67.56 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )                             |                             |                             | Γ                   | river & Po    | ower Data                  | 1          |                  |  |
| Flow, best ef  | ff. point               | ,<br>(bowl / | (amua     |                 | : 1.509.            | 2 / 1.496.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 USapm                       | Driver siz                  | zina snecil                 | fication            |               | · Max                      |            | 4%               |  |
| Flow ratio, ra | ated / Bl               | FP (boy      | vl/pum    | n)              | 98.07               | / 98.89 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | Margin o                    | vor specifi                 | ication             |               | 1  Max power + 4%          |            |                  |  |
| Diameter rat   | io (rated               | d / max)     |           | F /             | · 95 55             | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | Sonico f                    | octor                       | ication             |               | . 0.00 %                   |            |                  |  |
| Head ratio (r  | ated dia                | a / max      | dia)      |                 | · 89.62             | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | Derver hydroulie . 1.15     |                             |                     |               |                            |            |                  |  |
|                |                         | 1/HI 9 6     | 7-2010    | 1               | · 1 00 /            | $\frac{100}{100}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | Power (hour / numn)         |                             |                     |               | . 124 np<br>: 142 / 144 bp |            |                  |  |
| Selection sta  |                         | WT II 0.0    | .1 2010   | 1               | : Accen             | : Acceptable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | Power (bowr/pump)           |                             |                     |               | . 1437 144 lip             |            |                  |  |
| Selection sta  | ilus                    |              |           |                 | . Acceptable        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Power, n                    | naximum,                    | rated dial          | meter         | : 144                      | np         |                  |  |
|                |                         |              |           |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Minimum                     | recomme                     | ended mo            | tor rating    | : 200                      | np / 149 I | KVV              |  |
| Power - hp     | 200<br>150<br>100<br>50 | Pu           | mp furthe | er adjusted for | friction and<br>The | power loss<br>duty point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | es of linesha<br>represents t | aft and thrus<br>he pump pe | st bearings.<br>rformance h | Pump is no<br>nead. | t adjusted fo | r any static l             | er         | -                |  |
|                |                         |              |           |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |                             |                     |               |                            |            |                  |  |
|                | 0                       |              |           |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |                             |                     |               |                            |            |                  |  |
|                | 800                     |              |           |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |                             |                     | MCC           |                            |            | T <sup>100</sup> |  |
|                | 720                     |              |           |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |                             |                     | Prefe         | rred operati               | ng region  | - 90             |  |
|                | 120                     |              |           |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |                             |                     | Bowl          | performanc                 | e          | 30               |  |
|                | 640 <del>9</del> .      | 13 in        |           |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |                             |                     | Pum           | o performan                | се         | - 80             |  |
|                | 560                     |              |           |                 |                     | and the second s |                               |                             |                             |                     |               | 22.                        |            | 70               |  |
|                | 300                     |              |           |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |                             |                     |               | Effic                      | ency       | /° %             |  |
| ۲۲ (L          | 480 8.                  | /2 in        |           |                 | $\sim$              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |                             |                     |               |                            |            | + 60 ·           |  |
| -<br>-         |                         |              |           |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |                             |                     |               |                            |            |                  |  |
| eac            | 400                     |              |           |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |                             |                     |               |                            |            |                  |  |
| Ť              | 320 6.                  | 81 in        | /         |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |                             |                     |               |                            |            | 40               |  |
|                |                         |              |           | <u> </u>        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             | $\mathbf{N}$                |                     |               |                            |            | <u> </u>         |  |
|                | 240                     |              |           |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |                             |                     |               |                            |            | - 30             |  |
|                | 160                     |              |           |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |                             |                     |               |                            |            | + 20             |  |
|                |                         |              |           |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |                             |                     |               |                            |            |                  |  |
|                | 80                      |              |           |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |                             |                     |               |                            |            | † 10             |  |
|                | <u>م الا</u>            |              |           |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |                             |                     |               |                            |            |                  |  |
|                | 0                       |              |           |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |                             |                     |               |                            |            |                  |  |
| - <del>"</del> | 50 T                    |              |           |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |                             |                     |               |                            | Hr         | 1                |  |
| ۲              | 25                      |              |           |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |                             |                     |               |                            |            |                  |  |
| ې<br>ک         | 20                      |              |           |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |                             |                     |               |                            |            |                  |  |
| L Z            | 0 <u> </u>              |              |           | 400             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |                             |                     | -             |                            |            | 1                |  |
|                | 0                       | 20           | U         | 400 6           | UU 80               | JU 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UUU 1,2                       | ∠∪∪ 1,4                     | +UU 1,6                     | , טטט               | συυ 2,0       | 100 2,2                    | :00 2,4    | 400              |  |

Flow - USgpm

G3 Engineering, Inc. www.g3engineering.com



# **Multi-Speed Performance Curve**



Pump further adjusted for friction and power losses of lineshaft and thrust bearings. Pump is not adjusted for any static lift. The duty point represents the pump performance head.





Copyright @ Weir Floway, Inc. All Rights Reserved

Additional Notes:

The head and power may be different than that shown in accordance with Hydraulic Institute / API 610 Standards

G3 Engineering, Inc. www.g3engineering.com







Customer: Kennedy Jenks Reference:

Weir Floway Inc. SCORE 16.5.1.0

| Item number  | 010    | Size / Stages      | 14DOL / 5 |
|--------------|--------|--------------------|-----------|
| Quote number | 480863 | Nominal pump speed | 1770 rpm  |

# Totals

Grand Total

\$ 141,502

# Pump

| Qty | Description                                                                 |
|-----|-----------------------------------------------------------------------------|
| 3   | Units - 14DOL - 5 stage Product lube - Sump Pump                            |
|     | Pump selection criteria                                                     |
|     | Speed operation: Variable speed operation                                   |
|     | Lubrication type                                                            |
|     | Lubrication type: Product lube                                              |
|     | Bowl Assembly - 5 Stage                                                     |
|     | Bowl size: 14DOL bowl assembly - 5 stage                                    |
|     | Bowl Materials: Cast iron (ASTM A48 cl 30-enamel lined)                     |
|     | Bowl connection type: Flanged                                               |
|     | Bowl Bolting Material: 304SS (ASTM F593 Gr CW1), Floway material code - 106 |
|     | Bowl bearing material: Bismuth tin bronze bowl bearings (UNS C89835)        |
|     | Impeller Material: Bronze (ASTM B584 C90300)                                |
|     | Collet Material: Steel (ASTM A108-90a Gr 1215)                              |
|     | Bowl Shaft Size: 1.9375" (Standard)                                         |
|     | Bowl Shaft Material: 416SS (ASTM A582-88a Type 416)                         |
|     | Suction type: Suction bell                                                  |
|     | Suction type bearing: Bismuth tin bronze (UNS C89835)                       |
|     | Suction Strainer: Clip on basket strainer 14DO                              |
|     | Suction Strainer Material                                                   |
|     | Strainer material - Galvanized steel                                        |
|     | Bowl assembly type: Fully assembled                                         |
|     | Column assembly - 1.5 x 10 in Threaded                                      |
|     | Column                                                                      |
|     | Column Size: Column 10" - (0- 20' and 0- 10' and 1- 5' and 1 - 2.58' Top)   |
|     | Column pipe material: ASTM A53 Gr. B rolled and welded steel                |
|     | Column pipe schedule: Floway standard .279" wall thickness                  |
|     | Column Connection Type: Threaded                                            |
|     | Bearing Retainer material: Ductile iron (ASTM A536-84 Gr 60-40-18)          |
|     | Lineshaft Circu 4 5"                                                        |
|     | Lineshaft Meterial: 416SS (ASTM AE92 99a Tuna 416)                          |
|     | Lineshall Material: 41055 (ASTM A502-66a Type 416)                          |
|     | Line shaft boaring material: \$1/055 (ASTM A502-008 Type 410)               |
|     | Discharge head accombly - 10x16 5 "F"                                       |
|     | Discharge head material: Steel (A26 plt, A105 flg, A52 Gr B pipe)           |
|     | Discharge Head Size: 10/16 5 "E"                                            |
|     | Discharge rize: 10"                                                         |
|     | Discharge Size. 10                                                          |
|     | Shaft sealing arrangement: Mechanical seal                                  |
|     | Mechanical seal construction: Single unbalanced mechanical seal             |
|     | moonamoar soar construction. Omgic anbalancea mechanical sear               |



### Pump

| Qty | Description                                                                                                   |
|-----|---------------------------------------------------------------------------------------------------------------|
|     | Mechanical seal type: John Crane type 5611 mechanical seal                                                    |
|     | Seal flush piping plan-Primary: Plan 13 Seal flush piping                                                     |
|     | Seal flush piping material - primary seal: 316SS tubing-Primary SFP                                           |
|     | Top Line Shaft Straightness: Floway Standard                                                                  |
|     | Stuffing box / Seal housing bearing material: Bismuth tin bronze seal housing bearing (UNS C89835)            |
|     | Head shaft couplings: Type CPAT flanged adjustable spacer coupling                                            |
|     | Coupling guard material / construction: Aluminum                                                              |
|     | Protective coatings                                                                                           |
|     | Protective coating - Discharge head: Carboguard 891 epoxy coating - Disch. head - interior and exterior       |
|     | Protective coating - Column: Carboguard 891 epoxy coating - Column - interior and exterior                    |
|     | Protective coating - Bowl assembly: Carboguard 891 epoxy coating - Bowls, exterior only                       |
|     | Protective coating - Soleplate: Carboguard 891 epoxy coating - Soleplate top side only                        |
|     | Miscellaneous coating options                                                                                 |
|     | NSF certified                                                                                                 |
|     | Assembly type - Unit                                                                                          |
|     | Assembly type - Unit: Factory assembled (bowl, head, and column only) shipped assembled                       |
|     | Start-up/Overage                                                                                              |
|     | Start-up options                                                                                              |
|     | Start up by Distributor/Manufacturer's Rep.                                                                   |
|     | Packaging and Shipping                                                                                        |
|     | Packaging options                                                                                             |
|     | Domestic packaging                                                                                            |
| Tes | sting                                                                                                         |
| Qty | Description                                                                                                   |
| 3   | Testing and Inspection options                                                                                |
|     | Performance / NPSH testing                                                                                    |
|     | Factory performance test acceptance criteria for rated condition per: ANSI/HI 14.6 grade 1U (Floway standard) |

Performance test options

Bowl assembly performance test - 3 units

Performance test witnessing

Non-witnessed

### Hydro testing

Hydrotest - Discharge Head options: Non witnessed hydrotest - discharge head - 3 units

### **Inspection and Analysis**

Analysis

Seismic analysis of anchorage

Structural natural frequency analysis (head/motor only), stamped by Floway P.E. - 1 units

## **Sole Plate**

Qty Description

3 Discharge head assembly - 10x16.5 "F" Soleplate type: Fabricated steel Soleplate size: 30"x30"x1.25"



# **Anchor Bolt**

Qty Description

3 Discharge head assembly - 10x16.5 "F" Soleplate anchor bolts with nuts: No soleplate anchor bolts

### Driver

| Qty | Description                                                                 |
|-----|-----------------------------------------------------------------------------|
| 3   | Driver                                                                      |
|     | Electric motor driver                                                       |
|     | Motor size selection: US 200HP 460v/3ph/60hz 1800 RPM WPI                   |
|     | Motor efficiency type: Premium efficient                                    |
|     | Motor shaft                                                                 |
|     | Motor shaft type: Motor vertical solid shaft                                |
|     | Reference head shaft diameter: For reference:1.5" Top line shaft diameter   |
|     | Motor thrust design                                                         |
|     | High thrust                                                                 |
|     | Motor bearing life options: 1 yr. min. / 5 yr. average                      |
|     | Motor enclosure: WPI                                                        |
|     | Motor service factor: 1.15                                                  |
|     | Starting method: Across the line starting                                   |
|     | Motor BD: Motor BD 16.5 in.                                                 |
|     | Miscellaneous motor options                                                 |
|     | Thermostats                                                                 |
|     | Inverter duty motor                                                         |
|     | Non-reverse device: No non-reverse device on motor                          |
|     | Motor testing options                                                       |
|     | Motor complete test - unwitnessed                                           |
|     | Conduit box size: Standard conduit box                                      |
|     | Elevation: Motor suitable for elevation <= 3300'                            |
|     | Ambient temperature: Motor suitable for ambient temperature <= 104 F (40 C) |
|     | UL labeled motor: Not UL labeled                                            |
|     | Motor packaging options: Motor domestic packaging                           |
|     | Driver design: NEMA                                                         |
|     | Driver shipping options: Motor NOT to be shipped to Floway factory          |
|     |                                                                             |

### G3 Engineering Inc



| www.g3engineer                 | erina co        | g, inc.    |           |             |            |           |                             |           |            |          |                                    |               |               |            |          |                 |                                |         |       |           |   |
|--------------------------------|-----------------|------------|-----------|-------------|------------|-----------|-----------------------------|-----------|------------|----------|------------------------------------|---------------|---------------|------------|----------|-----------------|--------------------------------|---------|-------|-----------|---|
| georgineer                     | inig.o          | 5111       |           |             |            |           | Pum                         | n P       | orfor      | mai      | nce D                              | atas          | hoo           | ;          |          |                 |                                |         |       |           |   |
| Questione                      |                 |            |           |             |            |           | r un                        | i p i v   | GIIUI      |          |                                    | alas          |               |            |          | 40000           | 0                              |         |       |           |   |
| Customer : Kennedy JenKS       |                 |            |           |             |            |           |                             |           |            | uote nu  | mber                               |               |               | -          | 48086    | 3               |                                |         |       |           |   |
| Customer reterence             |                 |            |           |             |            |           |                             |           |            | 5        | IZE                                |               |               |            | :        | 11JKH           |                                |         |       |           |   |
| Item number                    |                 | : (        | J11       | 1 1:0       |            |           |                             |           |            | 5        | tages                              |               |               | -          | :        | 2               | 4770                           | D 0     |       |           |   |
| Service : Lookout Hill BPS (86 |                 |            |           |             | 860 GI     | PIVI)     |                             |           | В          | ased on  | i curve                            | numpe         | er            | :          | 11JKH    | 11/70           | Rev. U                         |         |       |           |   |
| Quantity                       |                 | : 2        | 2         | · · · · · · | S          |           |                             |           |            |          | ate last                           | saved         |               |            |          | 06 Dec          | 2016                           | 7:07 A  | IVI   |           |   |
| Eleve neted                    |                 | U          | pera      | ting C      | onditi     | ons       | 00.011                      | C         |            |          | an stat to up                      |               |               |            | LIC      | quia            | Mater                          | Detek   | 1.    |           |   |
| Flow, rated                    | od /            | orocouro   | rotor     | d (raa      | upotod     | :8        | 60.0 U<br>40 0 ft           | Sgpm      |            |          | dditiona                           | )e<br>Lliquid | dooorir       | otion      |          |                 | vvater                         | - Potac | ne    |           |   |
| Differential he                |                 |            | , rated   | per) t      | uested     | ) 14      | 40.0 IL                     |           |            | A        | olido dia                          | ii iiquid     | descrip       | Juon       |          | •               | 0 00 :~                        |         |       |           |   |
| Differential ne                | ad /            | pressure.  | , rateo   | a (acti     | uai)       | : 14      | 41.1  ft                    | 00:       | -          | 5        | olias aiz                          | ameter,       | max           |            |          |                 | 0.00 in                        |         |       |           |   |
| Suction press                  | ure, i          | rated / ma | ax        |             |            | :0.       | .00/0.                      | oo psi.   | g          | 5        | olias co                           | ncentra       | ation, D      | y volun    | ne       |                 | 0.00 %                         | •       |       |           |   |
| NPSH availab                   | ole, ra         | itea       |           |             |            | : A       | mpie                        |           |            | 5        | olias co                           | ncentra       | ation, D      | y weigr    | n        |                 | 0.00 %                         |         |       |           |   |
| Frequency                      |                 |            |           |             |            | : 6       | 0 HZ                        |           |            |          | emperat                            | ture, m       | ax<br>taal/ma |            |          | :               | 68.000                         |         | ~~    |           |   |
|                                |                 |            | Pe        | ertorn      | nance      | 4         | 770                         |           |            | F        | iula aen                           | sity, ra      | tea / m       | ax         |          | ÷               | 1.000 /                        | 1.000   | 5G    |           |   |
| Speed, rated                   |                 |            |           |             |            | :1        | //0 rpi                     | m         |            | V        | iscosity,                          | , rated       |               |            |          | -               | 1.00 CF                        |         |       |           |   |
| Impeller diame                 | eter,           | rated      |           |             |            | : 8.      | .31 in                      |           |            | V        | apor pre                           | essure,       | rated         |            |          |                 | 0.00 ps                        | si.a    |       |           |   |
| Impeller diame                 | eter,           | maximur    | n         |             |            | : 8       | .31 in                      |           |            |          |                                    | 1 .           |               |            | Mat      | terial          | 0                              | (5      |       |           |   |
| Impeller diame                 | eter,           | minimum    | ו         |             |            | : 7.      | .20 in                      |           |            | N        | laterial s                         | selecte       | d             |            | _        | :               | Cast Ir                        | on/Bro  | nze   |           |   |
| Efficiency (boy                | wl/p            | ump)       |           |             |            | : 8:      | 2.84 / 8                    | 81.47 %   | 6          |          |                                    |               |               |            | Pressu   | ure Dat         | a                              |         |       |           |   |
| NPSH require                   | ed/m            | argin rec  | quired    |             |            | : 9       | .84/0.                      | .00 ft    |            | N        | laximum                            | n workii      | ng pres       | sure       |          |                 | See the                        | e Addit | ional | Data page | Э |
| Ns (imp. eye f                 | flow)           | / NSS (IM  | ip. ey    | e flow      | ()         | :2        | ,285/8                      | 3,978 L   | JS Units   | s C      | ompone                             | ent pres      | ssure li      | mit        |          |                 | See the                        | e Addit | ional | Data page | Э |
| MCSF                           |                 |            |           |             |            | :2        | 98.4 U                      | Sgpm      |            | N        | Maximum allowable suction pressure |               |               |            |          | • :             | N/A                            |         |       | _         |   |
| Head, maximu                   | um, r           | ated dian  | neter     |             |            | : 1:      | 54.3 ft                     |           |            | н        | Hydrostatic test pressure          |               |               |            |          |                 | : See the Additional Data page |         |       |           |   |
| Head rise to s                 | snuto           | f (bowl /  | pump      | り           |            | : 9       | : 9.00 / 10.18 %            |           |            |          | Driver & Pow                       |               |               |            |          |                 | er Data                        |         |       |           |   |
| Flow, best en.                 | . poin          | it (DOWI / | pump      | <i>י</i> )  |            | : 9.      | : 939.7 / 921.6 USgpm       |           |            | D        | Driver sizing specification        |               |               |            |          |                 | Max po                         | ower +  | 4%    |           |   |
| Flow ratio, rate               | ea / E          | SEP (DOV   | vi / pu   | mp)         |            | :9        | : 91.52 / 93.31 %           |           |            | N        |                                    |               |               |            |          | :               | 0.00 %                         | 1       |       |           |   |
| Diameter ratio                 | ) (rate         | ea / max)  | )<br>dia) |             |            | : 10      | : 100.00 %                  |           |            | S        | ervice fa                          | actor         |               |            |          |                 | 1.15                           |         |       |           |   |
|                                |                 |            |           | 101         |            | . 9       | : 99.22 %                   |           |            | _  P     | Power, hydraulic                   |               |               |            |          |                 | 30.74 ł                        | np      |       |           |   |
| Cq/Cn/Ce/Cn                    |                 | 51/HI 9.6  | .7-20     | 10]         |            | : 1.      | : 1.00 / 1.00 / 1.00 / 1.00 |           |            | V P      | Power (bowl / pump)                |               |               |            |          |                 | : 37.10/37.32 hp               |         |       |           |   |
| Selection state                | us              |            |           |             |            | : A       | : Acceptable                |           |            | P        | ower, m                            | naximur       | n, rateo      | d diame    | eter     |                 | 43.94 ł                        | ηρ      |       |           |   |
|                                |                 |            |           |             |            |           |                             |           |            | N        | Minimum recommended motor rating   |               |               |            |          | :               | : 50.00 hp / 37.29 kW          |         |       |           |   |
|                                |                 | Du         |           | ****        | Pum        | p and bo  | owl (das                    | hed) per  | rformanc   | e. Bow   | adjusted                           | for cons      | struction     | and viso   | osity.   |                 | 4-41 1164                      |         |       |           |   |
|                                |                 | Pu         | inp iui   | ther au     | ijusted it | JI IIICUO | The di                      | uty point | represe    | nts the  | pump per                           | formanc       | e head.       | D IS HOL A | lujusteu | ior any s       | tatic int.                     |         |       |           |   |
|                                | <sup>60</sup> T |            |           |             |            |           |                             |           | т <u>.</u> |          |                                    |               |               |            |          |                 |                                |         | ר     |           |   |
| d                              | 45              |            |           |             |            |           |                             |           |            |          |                                    |               |               |            |          |                 | Device                         |         | _     |           |   |
| י<br>ב                         |                 |            |           |             |            |           |                             |           |            |          |                                    |               |               |            |          |                 | Power                          |         |       |           |   |
| vel                            | 30 +            |            |           |             |            |           |                             |           |            |          |                                    |               |               |            |          |                 |                                |         | 1     |           |   |
| ٥<br>٥                         | 15              |            |           |             |            |           |                             |           |            |          |                                    |               |               |            |          |                 |                                |         | -     |           |   |
| -                              |                 |            |           |             |            |           |                             |           |            |          |                                    |               |               |            |          |                 |                                |         |       |           |   |
|                                | 0               |            |           |             |            |           |                             |           |            |          |                                    |               |               |            |          |                 |                                |         | -     |           |   |
| 2                              | 200 -           |            |           |             |            |           |                             | 1         |            | 1        |                                    | 1             |               |            |          | 05              |                                |         | T 100 | )         |   |
|                                |                 |            |           |             |            |           |                             |           |            |          |                                    |               |               |            | Pre      | S⊢<br>ferred or | perating                       | region  |       |           |   |
| 1                              | 80 +            |            |           |             |            |           |                             |           |            |          |                                    |               |               | -          | Bov      | vl perfori      | mance                          | region  | - 90  |           |   |
| 1                              | 60 -            |            |           |             |            |           |                             |           |            |          |                                    |               |               |            | Pun      | np perfo        | rmance                         |         | - 80  |           |   |
| 1                              |                 | 8 31 in    |           |             |            |           | 1000                        |           |            |          |                                    |               |               | <u> </u>   | +        |                 |                                |         | 70    |           |   |
| 1                              | 40 .            | 7.00 :=    |           | 7           |            |           |                             |           |            | $\nabla$ |                                    |               |               |            | ~~~      |                 |                                |         | Τ ′   | %         |   |
| t <b>≓</b> 1                   | 20              | 7.20 IN    |           |             |            |           |                             |           |            | X        |                                    |               | × .           |            |          | <u> </u>        | Efficier                       |         | 60    | -         |   |
| ν<br>σ 1                       |                 |            |           |             |            |           |                             | <u> </u>  |            |          |                                    |               |               | 2.         |          |                 |                                | C y     | 50    | Ω<br>Ω    |   |
| ea                             |                 |            |           |             |            |           |                             |           |            |          | Lees.                              |               |               |            | 2.       |                 |                                |         |       | cie.      |   |
| _ I                            | 80 +            |            |           |             |            |           |                             | +         |            |          |                                    |               |               |            |          | 2.              |                                |         | 40    | Ш.        |   |
|                                | 60 L            |            |           |             |            |           |                             | <u> </u>  |            |          | -                                  |               |               | L          |          |                 |                                |         | 30    | ш         |   |
|                                | · ·             |            |           |             |            |           |                             |           |            |          |                                    |               |               | 1          |          |                 |                                |         |       |           |   |
|                                | 40 +            |            |           |             |            |           |                             |           |            |          | 1                                  |               |               |            | 1        |                 |                                |         | 20    |           |   |
|                                | 20 +            |            |           |             |            |           |                             |           |            |          |                                    |               |               |            |          |                 |                                |         | 10    |           |   |

Flow - USgpm

NPSHr - ft

900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700

G3 Engineering, Inc. www.g3engineering.com



# **Multi-Speed Performance Curve**



G3 Engineering, Inc. www.g3engineering.com







Customer: Kennedy Jenks Reference:

Weir Floway Inc. SCORE 16.5.1.0

| Item number  | 011    | Size / Stages      | 11JKH / 2 |
|--------------|--------|--------------------|-----------|
| Quote number | 480863 | Nominal pump speed | 1770 rpm  |

# Totals

Grand Total

\$ 66,004

# Pump

| Qty | Description                                                                 |
|-----|-----------------------------------------------------------------------------|
| 2   | Units - 11JKH - 2 stage Product lube - Barrel Pump                          |
|     | Pump selection criteria                                                     |
|     | Speed operation: Variable speed operation                                   |
|     | Lubrication type                                                            |
|     | Lubrication type: Product lube                                              |
|     | Bowl Assembly - 2 Stage                                                     |
|     | Bowl size: 11JKH bowl assembly - 2 stage                                    |
|     | Bowl Materials: Cast iron (ASTM A48 cl 30-enamel lined)                     |
|     | Bowl connection type: Flanged                                               |
|     | Bowl Bolting Material: 304SS (ASTM F593 Gr CW1), Floway material code - 106 |
|     | Bowl bearing material: Bismuth tin bronze bowl bearings (UNS C89835)        |
|     | Impeller Material: Bronze (ASTM B584 C90300)                                |
|     | Collet Material: Steel (ASTM A108-90a Gr 1215)                              |
|     | Bowl Shaft Size: 1.6875" (Standard)                                         |
|     | Bowl Shaft Material: 416SS (ASTM A582-88a Type 416)                         |
|     | Suction type: Suction bell                                                  |
|     | Suction type bearing: Bismuth tin bronze (UNS C89835)                       |
|     | Suction Strainer: Clip on basket strainer 11JK                              |
|     | Suction Strainer Material                                                   |
|     | Strainer material - Galvanized steel                                        |
|     | Bowl assembly type: Fully assembled                                         |
|     | Column assembly - 1 x 8 in Threaded                                         |
|     | Column                                                                      |
|     | Column Size: Column 8" - (0- 20' and 0- 10' and 0- 5' and 1 - 3.48' Top)    |
|     | Column pipe material: ASTM A53 Gr. B rolled and welded steel                |
|     | Column pipe schedule: Schedule 30 .277" wall thickness                      |
|     | Column Connection Type: Threaded                                            |
|     | Lineshaft                                                                   |
|     | Lineshaft Size: 1"                                                          |
|     | Lineshaft Material: 416SS (ASTM A582-88a Type 416)                          |
|     | Lineshaft Coupling Material: 416SS (ASTM A582-88a Type 416)                 |
|     | Line shaft bearing material: Styrene Butadiene Rubber(SBR) (Qty 0 per pump) |
|     | Discharge head assembly - 10x16.5x16 "VF"                                   |
|     | Discharge head material: Steel (A36 pit, A105 flg, A53-Gr B pipe)           |
|     | Discharge Head Size: 10x16.5x16 "VF"                                        |
|     | Discharge size: 10"                                                         |
|     | Discharge Connection Type/Rating: 150# flange (Stl. std.)                   |
|     | Snaπ sealing arrangement: Mechanical seal                                   |
|     | iviecnanical seal construction: Single unbalanced mechanical seal           |
|     | iviecnanical seal type: John Grane type 5611 mechanical seal                |



### Pump

| Qty | Description                                                                                                                         |  |  |  |  |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|     | Seal flush piping plan-Primary: Plan 13 Seal flush piping                                                                           |  |  |  |  |  |  |  |  |  |
|     | Seal flush piping material - primary seal: 316SS tubing-Primary SFP                                                                 |  |  |  |  |  |  |  |  |  |
|     | Top Line Shaft Straightness: Floway Standard                                                                                        |  |  |  |  |  |  |  |  |  |
|     | Stuffing box / Seal housing bearing material: Bismuth tin bronze seal housing bearing (UNS C89835)                                  |  |  |  |  |  |  |  |  |  |
|     | Head shaft couplings: Type CPAT flanged adjustable spacer coupling                                                                  |  |  |  |  |  |  |  |  |  |
|     | Coupling guard material / construction: Aluminum                                                                                    |  |  |  |  |  |  |  |  |  |
|     | Protective coatings                                                                                                                 |  |  |  |  |  |  |  |  |  |
|     | Protective coating - Discharge head: Carboguard 891 epoxy coating - Disch. head - interior and exterior                             |  |  |  |  |  |  |  |  |  |
|     | Protective coating - Column: Carboguard 891 epoxy coating - Column - interior and exterior                                          |  |  |  |  |  |  |  |  |  |
|     | Protective coating - Bowl assembly: Carboguard 891 epoxy coating - Bowls, exterior only                                             |  |  |  |  |  |  |  |  |  |
|     | Protective coating - Barrel: Carboguard 891 epoxy coating - Barrel - interior only (exterior Carboline 635 primer)                  |  |  |  |  |  |  |  |  |  |
|     | Protective coating - Soleplate: Carboguard 891 epoxy coating - Soleplate top side only                                              |  |  |  |  |  |  |  |  |  |
|     | Miscellaneous coating options                                                                                                       |  |  |  |  |  |  |  |  |  |
|     | NSF certified                                                                                                                       |  |  |  |  |  |  |  |  |  |
|     | Assembly type - Unit<br>Assembly type - Unit: Factory assembled (bowl, head, and column only) shipped assembled<br>Start-up/Overage |  |  |  |  |  |  |  |  |  |
|     |                                                                                                                                     |  |  |  |  |  |  |  |  |  |
|     |                                                                                                                                     |  |  |  |  |  |  |  |  |  |
|     | Start-up options                                                                                                                    |  |  |  |  |  |  |  |  |  |
|     | Start up by Distributor/Manufacturer's Rep.                                                                                         |  |  |  |  |  |  |  |  |  |
|     | Packaging and Shipping                                                                                                              |  |  |  |  |  |  |  |  |  |
|     | Packaging options                                                                                                                   |  |  |  |  |  |  |  |  |  |
|     | Domestic packaging                                                                                                                  |  |  |  |  |  |  |  |  |  |
| _   | _                                                                                                                                   |  |  |  |  |  |  |  |  |  |
| Tes | sting                                                                                                                               |  |  |  |  |  |  |  |  |  |
| Qty | Description                                                                                                                         |  |  |  |  |  |  |  |  |  |
| 2   | Testing and Inspection options                                                                                                      |  |  |  |  |  |  |  |  |  |
|     | Performance / NPSH testing                                                                                                          |  |  |  |  |  |  |  |  |  |
|     | Factory performance test acceptance criteria for rated condition per: ANSI/HI 14.6 grade 1U (Floway standard)                       |  |  |  |  |  |  |  |  |  |
|     | Performance test options                                                                                                            |  |  |  |  |  |  |  |  |  |
|     | Bowl assembly performance test - 2 units                                                                                            |  |  |  |  |  |  |  |  |  |
|     | Performance test witnessing                                                                                                         |  |  |  |  |  |  |  |  |  |
|     | Non-witnessed                                                                                                                       |  |  |  |  |  |  |  |  |  |
|     | Hydro testing                                                                                                                       |  |  |  |  |  |  |  |  |  |
|     | Hydrotest - Discharge Head options: Non witnessed hydrotest - discharge head - 2 units                                              |  |  |  |  |  |  |  |  |  |
|     | Hydrotest - Suction barrel options: Non witnessed hydrotest - suction barrel - 2 units                                              |  |  |  |  |  |  |  |  |  |

### Inspection and Analysis

Analysis

Seismic analysis of anchorage

Structural natural frequency analysis (head/motor only), stamped by Floway P.E. - 1 units

# **Sole Plate**

Qty Description

2 Discharge head assembly - 10x16.5x16 "VF"

Soleplate type: Fabricated steel Soleplate size: 36"x36"x1.25"



### **Anchor Bolt**

Qty Description

Discharge head assembly - 10x16.5x16 "VF" 2 Soleplate anchor bolts with nuts: No soleplate anchor bolts

## Barrel

- Qty Description
- Suction barrel 16 in. x 7.6 ft. 2

Suction barrel: Standard pressure suction barrel Barrel diameter: 16" diameter suction barrel x 7.6 ft. Barrel material: Steel barrel - ASTM A53 pipe A240 plate Barrel suction nozzle: 10" suction nozzle and flange on barrel Barrel suction flange rating: 150# suction flange

### Driver

2

Qty Description Driver Electric motor driver Motor size selection: US 50HP 460v/3ph/60hz 1800 RPM WPI Motor efficiency type: Premium efficient Motor shaft Motor shaft type: Motor vertical solid shaft Reference head shaft diameter: For reference:1" Top line shaft diameter Motor thrust design High thrust Motor bearing life options: 1 yr. min. / 5 yr. average Motor enclosure: WPI Motor service factor: 1.15 Starting method: Across the line starting Motor BD: Motor BD 12 in. Miscellaneous motor options Thermostats Inverter duty motor Non-reverse device: No non-reverse device on motor Motor testing options Motor complete test - unwitnessed Conduit box size: Standard conduit box Elevation: Motor suitable for elevation <= 3300' Ambient temperature: Motor suitable for ambient temperature <= 104 F (40 C) UL labeled motor: Not UL labeled Motor packaging options: Motor domestic packaging Driver design: NEMA Driver shipping options: Motor NOT to be shipped to Floway factory

### G3 Engineering, Inc.



| www.g3engineering.cor          | n                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                       |                    |  |  |
|--------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|--------------------|--|--|
|                                |                             | Pump Performa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ance Datasheet                                                        |                                       |                    |  |  |
| Customer                       | · Kennedy Jenks             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quote number                                                          | · 480863                              |                    |  |  |
| Customer reference             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Size                                                                  | : 12.IKH                              |                    |  |  |
| Item number                    | · 012                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stages 2                                                              |                                       |                    |  |  |
| Service                        | · Bass Lake BPS (120        | 0 GPM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Based on curve number                                                 | · · · · · · · · · · · · · · · · · · · |                    |  |  |
| Quantity                       | · 2                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date last saved                                                       | : 06 Dec 2016 7:36 AM                 |                    |  |  |
| Quantity                       | Operating Condition         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       | Liquid                                |                    |  |  |
| Flow rated                     | Operating Condition         | · 1 200 0 USapm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Liquid type                                                           | · Water - Potable                     |                    |  |  |
| Differential head / pr         | ressure rated (requested)   | : 1,200.0 000gpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Additional liquid description                                         | . Water - Fotable                     |                    |  |  |
| Differential head / pr         | ressure, rated (actual)     | · 121 2 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Solids diameter max                                                   | • 0.00 in                             |                    |  |  |
| Suction pressure ra            | ted / max                   | : 0.00 / 0.00  psi  a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Solids concentration, by volume                                       | : 0.00 m                              |                    |  |  |
| NPSH available rate            | ad                          | : Ample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Solids concentration, by volume                                       | · 0.00 %                              |                    |  |  |
| Frequency                      |                             | : 60 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Temperature max                                                       | : 68.00 deg F                         |                    |  |  |
| linoquonoy                     | Performance                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fluid density rated / max                                             | 1 000 / 1 000 SC                      | 4                  |  |  |
| Speed rated                    | i chomanoc                  | : 1770 rpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Viscosity, rated                                                      | : 1.00 cP                             | -                  |  |  |
| Impeller diameter ra           | ated                        | : 8 28 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vapor pressure, rated                                                 | : 0.00 psi.a                          |                    |  |  |
| Impeller diameter, re          | naximum                     | : 9.06 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                       | laterial                              |                    |  |  |
| Impeller diameter, m           | ninimum                     | : 7 69 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Material selected                                                     | · Cast Iron/Bronze                    | <del>7</del>       |  |  |
| Efficiency (bowl / pu          | mp)                         | · 82 49 / 80 90 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pres                                                                  | sure Data                             | ,                  |  |  |
| NPSH required / ma             | rain required               | 10.64 / 0.00 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum working pressure                                              | · See the Addition                    | al Data nage       |  |  |
| Ns (imp. eve flow) /           | Nss (imp. eve flow)         | : 2.348 / 10.219 US Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Component pressure limit                                              | : See the Addition                    | al Data page       |  |  |
| MCSF                           |                             | : 324.3 USapm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Maximum allowable suction press                                       |                                       | ai Data page       |  |  |
| Head, maximum, rat             | ted diameter                | : 154.1 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hydrostatic test pressure                                             | · See the Addition                    | al Data naga       |  |  |
| Head rise to shutoff           | (bowl / pump)               | : 25.88 / 27.74 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Driver                                                                | & Power Data                          |                    |  |  |
| Flow, best eff, point          | (bowl / pump)               | : 1.101.5 / 1.075.2 USapm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Driver sizing specification                                           | · Max nower + 4%                      |                    |  |  |
| Flow ratio, rated / Bl         | EP (bowl / pump)            | : 108.94 / 111.61 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Margin over specification                                             | · 0.00 %                              | ,                  |  |  |
| Diameter ratio (rated          | d / max)                    | : 91.44 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Service factor                                                        | · 1 15                                |                    |  |  |
| Head ratio (rated dia          | a / max dia)                | : 75.44 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Power, hydraulic                                                      | : 36.90 hp                            | : 36 90 hp         |  |  |
| Cq/Ch/Ce/Cn [ANS               | I/HI 9.6.7-2010]            | : 1.00 / 1.00 / 1.00 / 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Power (bowl / pump)                                                   | : 44.73 / 44.95 hp                    | : 44.73 / 44.95 hp |  |  |
| Selection status               |                             | : Acceptable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Power, maximum, rated diameter                                        | : 46.26 hp                            |                    |  |  |
|                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum recommended motor rati                                        | ing : 50.00 hp / 37.29                | kW                 |  |  |
| 60<br>du 45<br>- 30<br>15<br>0 | Pump further adjusted for f | The duty point represents the duty point represented by the duty p | aft and thrust bearings. Pump is not adjustene pump performance head. | ed for any static lift.               |                    |  |  |
| 250                            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                       | 00                 |  |  |
| 225                            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | VCSF<br>Preferred operating region    | 0                  |  |  |
| 225                            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E                                                                     | 3owl performance                      | 0                  |  |  |
| 200 9.                         | 06 in                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | <sup>3</sup> ump performance 8        | 0                  |  |  |
| 175                            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | 7                                     | 0                  |  |  |
| 8.                             | 28 in                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                       | %                  |  |  |
| J = 150 7.                     | 69 in                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | Efficiency                            |                    |  |  |
| <b>DB</b> 125                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                       |                    |  |  |
| ₽ 100 L                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                       |                    |  |  |
|                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Terrer Carine                                                         |                                       | °¥⊨<br>∐           |  |  |
| 75                             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | 3                                     | 0                  |  |  |
| 50                             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | 2                                     | 20                 |  |  |
| 05                             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                       | 0                  |  |  |
| 25                             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | 1                                     | 0                  |  |  |
| 0                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | 0                                     | l .                |  |  |
| ±                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                       |                    |  |  |
|                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | NPSHr                                 |                    |  |  |
| <u> </u>                       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                       |                    |  |  |
| Ğ,                             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                       |                    |  |  |
|                                | 200 400                     | 600 800 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,200 1,400 1,600                                                     | 1,800 2,000 2,200                     |                    |  |  |

Flow - USgpm

G3 Engineering, Inc. www.g3engineering.com



# **Multi-Speed Performance Curve**

Pump and bowl (dashed) performance. Bowl adjusted for construction and viscosity.

Pump further adjusted for friction and power losses of lineshaft and thrust bearings. Pump is not adjusted for any static lift. The duty point represents the pump performance head.





00000620167:36 AM

Copyright @ Weir Floway, Inc. All Rights Reserved

Additional Notes:

The head and power may be different than that shown in accordance with Hydraulic Institute / API 610 Standards

G3 Engineering, Inc. www.g3engineering.com







Customer: Kennedy Jenks Reference:

Weir Floway Inc. SCORE 16.5.1.0

| Item number  | 012    | Size / Stages      | 12JKH / 2 |
|--------------|--------|--------------------|-----------|
| Quote number | 480863 | Nominal pump speed | 1770 rpm  |

# Totals

Grand Total

\$ 68,741

# Pump

| Qty | Description                                                                 |
|-----|-----------------------------------------------------------------------------|
| 2   | Units - 12JKH - 2 stage Product lube - Barrel Pump                          |
|     | Pump selection criteria                                                     |
|     | Speed operation: Variable speed operation                                   |
|     | Lubrication type                                                            |
|     | Lubrication type: Product lube                                              |
|     | Bowl Assembly - 2 Stage                                                     |
|     | Bowl size: 12JKH bowl assembly - 2 stage                                    |
|     | Bowl Materials: Cast iron (ASTM A48 cl 30-enamel lined)                     |
|     | Bowl connection type: Flanged                                               |
|     | Bowl Bolting Material: 304SS (ASTM F593 Gr CW1), Floway material code - 106 |
|     | Bowl bearing material: Bismuth tin bronze bowl bearings (UNS C89835)        |
|     | Impeller Material: Bronze (ASTM B584 C90300)                                |
|     | Collet Material: Steel (ASTM A108-90a Gr 1215)                              |
|     | Bowl Shaft Size: 1.6875" (Standard)                                         |
|     | Bowl Shaft Material: 416SS (ASTM A582-88a Type 416)                         |
|     | Suction type: Suction bell                                                  |
|     | Suction type bearing: Bismuth tin bronze (UNS C89835)                       |
|     | Suction Strainer: Clip on basket strainer 12JK                              |
|     | Suction Strainer Material                                                   |
|     | Strainer material - Galvanized steel                                        |
|     | Bowl assembly type: Fully assembled                                         |
|     | Column assembly - 1 x 8 in Threaded                                         |
|     | Column                                                                      |
|     | Column Size: Column 8" - (0- 20' and 0- 10' and 0- 5' and 1 - 3.85' Top)    |
|     | Column pipe material: ASTM A53 Gr. B rolled and welded steel                |
|     | Column pipe schedule: Schedule 30 .277" wall thickness                      |
|     | Column Connection Type: Threaded                                            |
|     |                                                                             |
|     | Lineshaft Matariali 44000 (ACTM ACCO POs Ture 440)                          |
|     | Lineshaft Material: 41655 (ASTM A582-888 Type 416)                          |
|     | Line shaft bearing material. Styrene Butediane Bukker(SBB) (Otr 0 per pump) |
|     | Disebarge beed accomply. 10x16 5x18 "VE"                                    |
|     | Discharge head assembly - 10x10.3x10 VF                                     |
|     | Discharge Head Material. Steel (AS6 pil, A105 lig, A53-GFB pipe)            |
|     |                                                                             |
|     | Discharge Size. 10                                                          |
|     | Shaft sooling arrangement: Mechanical sool                                  |
|     | Shan sealing all angement. Methalinal seal                                  |
|     | Mechanical seal construction, only europatial ced mechanical seal           |
|     | mechanical seal type. John Grane type 5011 mechanical seal                  |



### Pump

| Qty | Description                                                                                                        |
|-----|--------------------------------------------------------------------------------------------------------------------|
|     | Seal flush piping plan-Primary: Plan 13 Seal flush piping                                                          |
|     | Seal flush piping material - primary seal: 316SS tubing-Primary SFP                                                |
|     | Top Line Shaft Straightness: Floway Standard                                                                       |
|     | Stuffing box / Seal housing bearing material: Bismuth tin bronze seal housing bearing (UNS C89835)                 |
|     | Head shaft couplings: Type CPAT flanged adjustable spacer coupling                                                 |
|     | Coupling guard material / construction: Aluminum                                                                   |
|     | Protective coatings                                                                                                |
|     | Protective coating - Discharge head: Carboguard 891 epoxy coating - Disch. head - interior and exterior            |
|     | Protective coating - Column: Carboguard 891 epoxy coating - Column - interior and exterior                         |
|     | Protective coating - Bowl assembly: Carboguard 891 epoxy coating - Bowls, exterior only                            |
|     | Protective coating - Barrel: Carboguard 891 epoxy coating - Barrel - interior only (exterior Carboline 635 primer) |
|     | Protective coating - Soleplate: Carboguard 891 epoxy coating - Soleplate top side only                             |
|     | Miscellaneous coating options                                                                                      |
|     | NSF certified                                                                                                      |
|     | Assembly type - Unit                                                                                               |
|     | Assembly type - Unit: Factory assembled (bowl, head, and column only) shipped assembled                            |
|     | Start-up/Overage                                                                                                   |
|     | Start-up options                                                                                                   |
|     | Start up by Distributor/Manufacturer's Rep.                                                                        |
|     | Packaging and Shipping                                                                                             |
|     | Packaging options                                                                                                  |
|     | Domestic packaging                                                                                                 |
| Tes | sting                                                                                                              |
| Qty | Description                                                                                                        |
| 2   | Testing and Inspection options                                                                                     |
|     | Performance / NPSH testing                                                                                         |
|     | Factory performance test acceptance criteria for rated condition per: ANSI/HI 14.6 grade 1U (Floway standard)      |
|     | Performance test options                                                                                           |
|     | Bowl assembly performance test - 2 units                                                                           |
|     | Performance test witnessing                                                                                        |
|     | Non-witnessed                                                                                                      |
|     | Hydro testing                                                                                                      |
|     | Hydrotest - Discharge Head options: Non witnessed hydrotest - discharge head - 2 units                             |
|     | Hydrotest - Suction barrel options: Non witnessed hydrotest - suction barrel - 2 units                             |
|     | Inspection and Analysis                                                                                            |

Analysis

Seismic analysis of anchorage

Structural natural frequency analysis (head/motor only), stamped by Floway P.E. - 1 units

# **Sole Plate**

Qty Description

2 Discharge head assembly - 10x16.5x18 "VF"

Soleplate type: Fabricated steel Soleplate size: 36"x36"x1.25"



### **Anchor Bolt**

Qty Description

Discharge head assembly - 10x16.5x18 "VF" 2 Soleplate anchor bolts with nuts: No soleplate anchor bolts

## Barrel

- Qty Description
- Suction barrel 18 in. x 7.94 ft. 2

Suction barrel: Standard pressure suction barrel Barrel diameter: 18" diameter suction barrel x 7.94 ft. Barrel material: Steel barrel - ASTM A53 pipe A240 plate Barrel suction nozzle: 12" suction nozzle and flange on barrel Barrel suction flange rating: 150# suction flange

### Driver

2

Qty Description Driver Electric motor driver Motor size selection: US 50HP 460v/3ph/60hz 1800 RPM WPI Motor efficiency type: Premium efficient Motor shaft Motor shaft type: Motor vertical solid shaft Reference head shaft diameter: For reference:1" Top line shaft diameter Motor thrust design High thrust Motor bearing life options: 1 yr. min. / 5 yr. average Motor enclosure: WPI Motor service factor: 1.15 Starting method: Across the line starting Motor BD: Motor BD 12 in. Miscellaneous motor options Thermostats Inverter duty motor Non-reverse device: No non-reverse device on motor Motor testing options Motor complete test - unwitnessed Conduit box size: Standard conduit box Elevation: Motor suitable for elevation <= 3300' Ambient temperature: Motor suitable for ambient temperature <= 104 F (40 C) UL labeled motor: Not UL labeled Motor packaging options: Motor domestic packaging Driver design: NEMA Driver shipping options: Motor NOT to be shipped to Floway factory

|      |           |           |           | RMCC RE    | CLAIMED/F  | RAIN/RIVEI | R WATER    | used FOR ( | GOLF COU   | RSE IRRIG  | ATION     |         |             |         |
|------|-----------|-----------|-----------|------------|------------|------------|------------|------------|------------|------------|-----------|---------|-------------|---------|
|      | Jan       | Feb       | Mar       | April      | May        | June       | July       | Aug        | Sept       | Oct        | Nov       | Dec     | TOTAL       | AC Feet |
| 2004 | 0         | 0         | 0         | 0          | 0          | 0          | 0          | 32,271,664 | 24,124,682 | 12,042,621 | 0         | 0       | 68,438,967  | 210.0   |
| 2005 | 0         | 0         | 0         | 0          | 16,630,838 | 26,814,512 | 36,402,337 | 34,133,912 | 22,205,988 | 8,775,311  | 0         | 0       | 144,962,898 | 444.9   |
| 2006 | 0         | 0         | 0         | 0          | 6,766,725  | 33,466,274 | 34,890,191 | 29,922,670 | 25,027,177 | 4,124,965  | 251,454   | 0       | 134,449,456 | 412.6   |
| 2007 | 0         | 0         | 8,028,234 | 12,384,053 | 25,061,082 | 35,457,957 | 34,901,154 | 31,926,322 | 20,635,416 | 8,307,235  | 5,527,905 | 677,308 | 182,906,666 | 561.4   |
| 2008 | 1,659,642 | 3,416,483 | 7,124,928 | 18,287,541 | 29,461,199 | 34,964,198 | 33,603,413 | 31,014,257 | 24,379,703 | 9,898,221  | 558,332   | 0       | 194,367,917 | 596.5   |
| 2009 | 52,784    | 0         | 2,975,658 | 16,717,552 | 22,729,582 | 32,833,243 | 46,776,756 | 43,909,242 | 28,182,762 | 11,666,411 | 3,933,034 | 262,164 | 210,039,188 | 644.6   |
| 2010 | 597,420   | 531,726   | 519,342   | 1,149,164  | 12,408,766 | 37,970,917 | 46,140,605 | 40,058,609 | 27,082,893 | 11,123,674 | 3,537,359 | 175,506 | 181,295,981 | 556.4   |
| 2011 | 872,560   | 713,619   | 1,313,020 | 8,984,949  | 18,274,385 | 27,470,149 | 46,391,726 | 40,394,603 | 29,335,909 | 9,066,660  | 597,141   | 995,453 | 183,414,721 | 562.9   |
| 2012 | 878,154   | 2,778,006 | 1,196,596 | 7,361,960  | 32,770,815 | 45,143,654 | 47,147,006 | 42,805,041 | 28,569,713 | 12,850,329 | 492,614   | 15,155  | 221,993,888 | 681.3   |
| 2013 | 106,349   | 1,341,286 | 8,606,675 | 18,332,384 | 35,468,226 | 41,821,801 | 48,030,013 | 43,806,357 | 22,120,481 | 20,445,260 | 5,670,447 | 156,796 | 245,749,279 | 754.2   |
| 2014 | 3,376,895 | 770,891   | 5,676,877 | 15,768,648 | 32,126,458 | 43,082,072 | 45,349,608 | 44,684,082 | 26,637,494 | 12,584,964 | 757,116   | 148,932 | 230,815,105 | 708.4   |
| 2015 | 328,082   | 431,985   | 7,101,232 | 16,684,761 | 26,270,887 | 42,472,558 | 45,059,817 | 39,039,324 | 28,975,721 | 13,805,881 | 256,034   | 33,022  | 220,426,282 | 676.5   |
| 2016 | 13,823    | 0         | 0         | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0         | 0       | 13,823      | 0.0     |

From Master Wastewater Data Spreadsheet

| Irrigation |            |            |            |            |           |         |           |           |           |            |            |            |             |
|------------|------------|------------|------------|------------|-----------|---------|-----------|-----------|-----------|------------|------------|------------|-------------|
| Season     | July       | Aug        | Sep        | Oct        | Nov       | Dec     | Jan       | Feb       | March     | April      | May        | June       | Total       |
| 2004-2005  | 0          | 32,271,664 | 24,124,682 | 12,042,621 | 0         | 0       | 0         | 0         | 0         | 0          | 16,630,838 | 26,814,512 | 111,884,317 |
| 2005-2006  | 36,402,337 | 34,133,912 | 22,205,988 | 8,775,311  | 0         | 0       | 0         | 0         | 0         | 0          | 6,766,725  | 33,466,274 | 141,750,547 |
| 2006-2007  | 34,890,191 | 29,922,670 | 25,027,177 | 4,124,965  | 251,454   | 0       | 0         | 0         | 8,028,234 | 12,384,053 | 25,061,082 | 35,457,957 | 175,147,783 |
| 2007-2008  | 34,901,154 | 31,926,322 | 20,635,416 | 8,307,235  | 5,527,905 | 677,308 | 1,659,642 | 3,416,483 | 7,124,928 | 18,287,541 | 29,461,199 | 34,964,198 | 196,889,331 |
| 2008-2009  | 33,603,413 | 31,014,257 | 24,379,703 | 9,898,221  | 558,332   | 0       | 52,784    | 0         | 2,975,658 | 16,717,552 | 22,729,582 | 32,833,243 | 174,762,745 |
| 2009-2010  | 46,776,756 | 43,909,242 | 28,182,762 | 11,666,411 | 3,933,034 | 262,164 | 597,420   | 531,726   | 519,342   | 1,149,164  | 12,408,766 | 37,970,917 | 187,907,704 |
| 2010-2011  | 46,140,605 | 40,058,609 | 27,082,893 | 11,123,674 | 3,537,359 | 175,506 | 872,560   | 713,619   | 1,313,020 | 8,984,949  | 18,274,385 | 27,470,149 | 185,747,328 |
| 2011-2012  | 46,391,726 | 40,394,603 | 29,335,909 | 9,066,660  | 597,141   | 995,453 | 878,154   | 2,778,006 | 1,196,596 | 7,361,960  | 32,770,815 | 45,143,654 | 216,910,677 |
| 2012-2013  | 47,147,006 | 42,805,041 | 28,569,713 | 12,850,329 | 492,614   | 15,155  | 106,349   | 1,341,286 | 8,606,675 | 18,332,384 | 35,468,226 | 41,821,801 | 237,556,579 |
| 2013-2014  | 48,030,013 | 43,806,357 | 22,120,481 | 20,445,260 | 5,670,447 | 156,796 | 3,376,895 | 770,891   | 5,676,877 | 15,768,648 | 32,126,458 | 43,082,072 | 241,031,195 |
| 2014-2015  | 45,349,608 | 44,684,082 | 26,637,494 | 12,584,964 | 757,116   | 148,932 | 328,082   | 431,985   | 7,101,232 | 16,684,761 | 26,270,887 | 42,472,558 | 223,451,701 |
| 2015-2016  | 45,059,817 | 39,039,324 | 28,975,721 | 13,805,881 | 256,034   | 33,022  | 13,823    |           |           |            |            |            |             |
| Average    | 42,829,029 | 38,756,051 | 26,094,727 | 11,387,360 | 2,158,144 | 246,434 | 788,571   | 1,109,333 | 4,726,951 | 12,852,335 | 26,063,489 | 37,912,950 |             |

| AF/Month |  |
|----------|--|
|----------|--|

| Irrigation |      |     |     |     |       |       |       |     |       |       |     |      |       |
|------------|------|-----|-----|-----|-------|-------|-------|-----|-------|-------|-----|------|-------|
| Season     | July | Aug | Sep | Oct | Nov   | Dec   | Jan   | Feb | March | April | May | June | Total |
| 2004-2005  | 0    | 99  | 74  | 37  | 0     | 0     | 0     | 0   | 0     | 0     | 51  | 82   | 343   |
| 2005-2006  | 112  | 105 | 68  | 27  | 0     | 0     | 0     | 0   | 0     | 0     | 21  | 103  | 435   |
| 2006-2007  | 107  | 92  | 77  | 13  | 1     | 0     | 0     | 0   | 25    | 38    | 77  | 109  | 538   |
| 2007-2008  | 107  | 98  | 63  | 25  | 17    | 2     | 5     | 10  | 22    | 56    | 90  | 107  | 604   |
| 2008-2009  | 103  | 95  | 75  | 30  | 2     | 0     | 0     | 0   | 9     | 51    | 70  | 101  | 536   |
| 2009-2010  | 144  | 135 | 86  | 36  | 12    | 1     | 2     | 2   | 2     | 4     | 38  | 117  | 577   |
| 2010-2011  | 142  | 123 | 83  | 34  | 11    | 1     | 3     | 2   | 4     | 28    | 56  | 84   | 570   |
| 2011-2012  | 142  | 124 | 90  | 28  | 2     | 3     | 3     | 9   | 4     | 23    | 101 | 139  | 666   |
| 2012-2013  | 145  | 131 | 88  | 39  | 2     | 0     | 0     | 4   | 26    | 56    | 109 | 128  | 729   |
| 2013-2014  | 147  | 134 | 68  | 63  | 17    | 0     | 10    | 2   | 17    | 48    | 99  | 132  | 740   |
| 2014-2015  | 139  | 137 | 82  | 39  | 2     | 0     | 1     | 1   | 22    | 51    | 81  | 130  | 686   |
| 2015-2016  | 138  | 120 | 89  | 42  | 0.786 | 0.101 | 0.042 |     |       |       |     |      |       |
| Average    | 131  | 119 | 80  | 35  | 7     | 1     | 2     | 3   | 15    | 39    | 80  | 116  | 627   |

| Irrigation Season     | July | Aug | Sep | Oct | Nov   | Dec   | Jan   | Feb | March | April | May | June | Total |
|-----------------------|------|-----|-----|-----|-------|-------|-------|-----|-------|-------|-----|------|-------|
| 2004-2005             | 0    | 99  | 74  | 37  | 0     | 0     | 0     | 0   | 0     | 0     | 51  | 82   | 343   |
| 2005-2006             | 112  | 105 | 68  | 27  | 0     | 0     | 0     | 0   | 0     | 0     | 21  | 103  | 435   |
| 2006-2007             | 107  | 92  | 77  | 13  | 1     | 0     | 0     | 0   | 25    | 38    | 77  | 109  | 538   |
| 2007-2008             | 107  | 98  | 63  | 25  | 17    | 2     | 5     | 10  | 22    | 56    | 90  | 107  | 604   |
| 2008-2009             | 103  | 95  | 75  | 30  | 2     | 0     | 0     | 0   | 9     | 51    | 70  | 101  | 536   |
| 2009-2010             | 144  | 135 | 86  | 36  | 12    | 1     | 2     | 2   | 2     | 4     | 38  | 117  | 577   |
| 2010-2011             | 142  | 123 | 83  | 34  | 11    | 1     | 3     | 2   | 4     | 28    | 56  | 84   | 570   |
| 2011-2012             | 142  | 124 | 90  | 28  | 2     | 3     | 3     | 9   | 4     | 23    | 101 | 139  | 666   |
| 2012-2013             | 145  | 131 | 88  | 39  | 2     | 0     | 0     | 4   | 26    | 56    | 109 | 128  | 729   |
| 2013-2014             | 147  | 134 | 68  | 63  | 17    | 0     | 10    | 2   | 17    | 48    | 99  | 132  | 740   |
| 2014-2015             | 139  | 137 | 82  | 39  | 2     | 0     | 1     | 1   | 22    | 51    | 81  | 130  | 686   |
| 2015-2016             | 138  | 120 | 89  | 42  | 0.786 | 0.101 | 0.042 |     |       |       |     |      |       |
| Average of last 10 yr | 130  | 120 | 80  | 35  | 5     | 0     | 0     | 5   | 15    | 40    | 80  | 115  | 625   |
| Maximum               | 145  | 135 | 90  | 65  | 15    | 5     | 10    | 10  | 25    | 55    | 110 | 140  | 740   |
| Minimum               | 105  | 90  | 65  | 15  | 0     | 0     | 0     | 0   | 0     | 5     | 40  | 85   | 535   |
|                       |      |     |     |     |       |       |       |     |       |       |     |      |       |
| AVERAGE               |      |     |     |     |       |       |       |     |       |       |     |      |       |
| 2006-2008             | 107  | 95  | 70  | 19  | 9     | 1     | 3     | 5   | 23    | 47    | 84  | 108  | 571   |
| 2008-2010             | 123  | 115 | 81  | 33  | 7     | 0     | 1     | 1   | 5     | 27    | 54  | 109  | 557   |
| 2010-2012             | 142  | 123 | 87  | 31  | 6     | 2     | 3     | 5   | 4     | 25    | 78  | 111  | 618   |
| 2012-2014             | 146  | 133 | 78  | 51  | 9     | 0     | 5     | 3   | 22    | 52    | 104 | 130  | 734   |
| 2014-2016             | 139  | 128 | 85  | 40  | 2     | 0     | 1     | 1   | 22    | 51    | 81  | 130  | 686   |
| AVERAGE               | 130  | 120 | 80  | 35  | 5     | 0     | 0     | 5   | 15    | 40    | 80  | 120  | 635   |
| Maximum               | 146  | 133 | 87  | 51  | 9     | 2     | 5     | 5   | 23    | 52    | 104 | 130  | 734   |
| Minimum               | 107  | 95  | 70  | 19  | 2     | 0     | 1     | 1   | 4     | 25    | 54  | 108  | 557   |
| SUM                   |      |     |     |     |       |       |       |     |       |       |     |      |       |
| 2006-2008             | 214  | 190 | 140 | 38  | 18    | 2     | 5     | 10  | 47    | 94    | 167 | 216  | 1,142 |
| 2008-2010             | 247  | 230 | 161 | 66  | 14    | 1     | 2     | 2   | 11    | 55    | 108 | 217  | 1,113 |
| 2010-2012             | 284  | 247 | 173 | 62  | 13    | 4     | 5     | 11  | 8     | 50    | 157 | 223  | 1,236 |
| 2012-2014             | 292  | 266 | 156 | 102 | 19    | 1     | 11    | 6   | 44    | 105   | 207 | 261  | 1,469 |
| 2014-2016             | 277  | 257 | 171 | 81  | 3     | 1     | 1     | 1   | 22    | 51    | 81  | 130  | 686   |
| AVERAGE               | 265  | 240 | 160 | 70  | 15    | 0     | 5     | 5   | 25    | 70    | 145 | 210  | 1,130 |
| Maximum               | 292  | 266 | 173 | 102 | 19    | 4     | 11    | 11  | 47    | 105   | 207 | 261  | 1,469 |
| Minimum               | 214  | 190 | 140 | 38  | 3     | 1     | 1     | 1   | 8     | 50    | 81  | 130  | 686   |

\*Peak month is July according to the Averages outlined in blue

| Irrigation <sup>®</sup> eason | July  | Aug   | Sep   | Oct   | Nov  | Dec  | Jan  | Feb  | March | April | May   | June  | Total |
|-------------------------------|-------|-------|-------|-------|------|------|------|------|-------|-------|-------|-------|-------|
| PERCENTAGE                    | _     |       |       |       |      |      |      |      |       |       |       |       |       |
| 2006-2008                     | 18.76 | 16.62 | 12.27 | 3.34  | 1.55 | 0.18 | 0.45 | 0.92 | 4.07  | 8.24  | 14.66 | 18.93 |       |
| 2008-2010                     | 22.16 | 20.66 | 14.49 | 5.95  | 1.24 | 0.07 | 0.18 | 0.15 | 0.96  | 4.93  | 9.69  | 19.52 |       |
| 2010-2012                     | 22.98 | 19.98 | 14.01 | 5.01  | 1.03 | 0.29 | 0.43 | 0.87 | 0.62  | 4.06  | 12.68 | 18.03 |       |
| 2012-2014                     | 19.89 | 18.10 | 10.59 | 6.96  | 1.29 | 0.04 | 0.73 | 0.44 | 2.98  | 7.13  | 14.12 | 17.74 |       |
| 2014-2016                     | 40.46 | 37.47 | 24.89 | 11.81 | 0.45 | 0.08 | 0.15 | 0.19 | 3.18  | 7.47  | 11.76 | 19.01 |       |
| AVERAGE                       | 24.85 | 22.57 | 15.25 | 6.61  | 1.11 | 0.13 | 0.39 | 0.51 | 2.36  | 6.36  | 12.58 | 18.65 |       |
| Maximum                       |       |       |       |       |      |      |      |      |       |       |       |       |       |

Minimum

### NUMBER OF CONNECTIONS TIMELINE

| · · · · · · · · · · · · · · · · · · · |                                   | Number of Co | onnections |        | D      | evelopme | nt Timeline |          |         |         |         | Source                                                           |
|---------------------------------------|-----------------------------------|--------------|------------|--------|--------|----------|-------------|----------|---------|---------|---------|------------------------------------------------------------------|
|                                       | Developments                      | Residential  | Commercial | 2016   | 2018   | 2020     | 2025        | 2030     | 2035    | 2040    | 2045    |                                                                  |
|                                       | Existing (Current)                | 2,502        |            |        |        |          |             |          |         |         |         |                                                                  |
| Phase 1                               | Infill                            | 238          |            |        | 238    | 0.05     |             |          |         |         |         | See AD Demand and Sources; 0.5 MGD allocation for infill         |
|                                       | Retreats North and East           | 62           |            |        | 62     | 0.01302  |             |          |         |         |         | Draft Sewer Study May 6, 2016 & Preliminary Sewer Study May      |
|                                       | Retreats West                     | 22           |            |        | 22     | 0.00462  |             |          |         |         |         | Final Sewer Study, May 3, 2016                                   |
|                                       | Murieta Gardens                   | 78           | 227        |        | 78     | 0.06416  |             |          |         |         |         | Draft Sewer Study, May 15, 2016; Commercial connections base     |
|                                       | Phase 1 Alone                     | 400          |            |        |        | 0.1318   |             |          |         |         |         |                                                                  |
|                                       | Total (Phase 1)                   | 2,902        |            |        |        | 0.4718   |             |          |         |         |         |                                                                  |
|                                       | % Increase from Current           | 16%          |            |        |        |          |             |          |         |         |         |                                                                  |
| Phase 2                               |                                   |              |            |        |        |          |             |          |         |         |         |                                                                  |
|                                       | Village A                         | 167          |            |        |        | 117      | 25          | 12       | 13      |         |         | Prelim Sewer Study, March 31, 2016, Section 5. Development Ti    |
|                                       | Village B                         | 167          |            |        |        | 17       | 50          | 50       | 50      |         |         | Prelim Sewer Study, March 31, 2016, Section 5. Development Ti    |
|                                       | Village C                         | 130          |            |        |        | 13       | 52          | 52       | 13      |         |         | Prelim Sewer Study, March 31, 2016, Section 5. Development Ti    |
|                                       | Village D                         | 42           |            |        |        | 0        | 11          | 11       | 21      |         |         | Prelim Sewer Study, March 31, 2016, Section 5. Development Ti    |
|                                       | Village E                         | 43           |            |        |        | 0        | 0           | 9        | 34      |         |         | Prelim Sewer Study, March 31, 2016, Section 5. Development Ti    |
|                                       | Village F                         | 95           |            |        |        | 0        | 2           | 36       | 57      |         |         | Prelim Sewer Study, March 31, 2016, Section 5. Development Ti    |
|                                       | Village G                         | 53           |            |        |        | 0        | 0           | 5        | 48      |         |         | Prelim Sewer Study, March 31, 2016, Section 5. Development Ti    |
|                                       | Village H                         | 122          |            |        |        | 0        | 12          | 31       | 79      |         |         | Prelim Sewer Study, March 31, 2016, Section 5. Development Ti    |
|                                       | Riverview                         | 140          |            |        |        | 140      |             |          |         |         |         | Title XVI Recycled Water Feasibility Study, June 2014. Page 2-5, |
|                                       | Lakeview                          | 99           |            |        |        | 99       |             |          |         |         |         | Title XVI Recycled Water Feasibility Study, June 2014. Page 2-5, |
|                                       | Apartments                        | 170          |            |        |        | 119      | 26          | 12       | 14      |         |         | Title XVI Recycled Water Feasibility Study, June 2014. Page 2-5, |
|                                       | Residences of Murieta Hills       | 198          |            |        |        | 198      |             |          |         |         |         | Preliminary Sewer Study, March 31, 2016, Section 5               |
|                                       | Industrial/Commercial/Residential | 160          |            |        |        | 24       | 48          | 48       | 40      |         |         | Title XVI Recycled Water Feasibility Study, June 2014. Page 2-5, |
|                                       | Phase 2 Alone                     | 1,586        |            | 2,502  | 400    | 727      | 225         | 265      | 369     | 0       | 0       |                                                                  |
|                                       | Total (Phase 2)                   | 4,488        |            | 2,502  | 2,902  | 3,629    | 3,854       | 4,119    | 4,488   | 4,488   | 4,488   |                                                                  |
|                                       | % Increase from Current           | 79%          |            |        |        |          |             |          |         |         |         |                                                                  |
|                                       |                                   |              | ADWF (MGD) | 0.3400 | 0.4718 | 0.624346 | 0.671649    | 0.727233 | 0.80482 | 0.80482 | 0.80482 |                                                                  |

y 31, 2016

sed on 0.04774 MGD and 210 gpd/connection (Table 2)

Timeline per page 4 of RMCSD Water Supply Assessment TM Timeline per page 4 of RMCSD Water Supply Assessment TM Timeline per page 4 of RMCSD Water Supply Assessment TM Timeline per page 4 of RMCSD Water Supply Assessment TM Timeline per page 4 of RMCSD Water Supply Assessment TM Timeline per page 4 of RMCSD Water Supply Assessment TM Timeline per page 4 of RMCSD Water Supply Assessment TM Timeline per page 4 of RMCSD Water Supply Assessment TM Timeline per page 4 of RMCSD Water Supply Assessment TM Timeline per page 4 of RMCSD Water Supply Assessment TM Timeline per page 4 of RMCSD Water Supply Assessment TM 5, Table 2-1 5, Table 2-2 5, Table 2-3

, Table 2-3

### RECYCLED WATER DEMAND TIMELINE

|                                            |                        |             |        | D      | evelopme | nt Timeline |          |          |        |        |         |                                       |      |        |      |      |      |      |
|--------------------------------------------|------------------------|-------------|--------|--------|----------|-------------|----------|----------|--------|--------|---------|---------------------------------------|------|--------|------|------|------|------|
|                                            | RW Annual Demand (AFY) |             | 2016   | 2018   | 2020     | 2025        | 2030     | 2035     | 2040   | 2045   |         |                                       |      |        |      |      |      |      |
| North & South Golf Courses (Current)       | 550                    |             | 550    | 550    | 550      | 550         | 550      | 550      | 550    | 550    |         |                                       | 2020 | 2025   | 2030 | 2035 | 2040 | 2045 |
| Infill                                     | 0                      |             |        | 0      | 0        | 0           | 0        | 0        | 0      | 0      |         | Village A                             | 70%  | 15%    | 7%   | 8%   |      |      |
| North Main Gate Entrance (Phase 1)         | 2.8                    |             |        |        | 2.8      | 2.8         | 2.8      | 2.8      | 2.8    | 2.8    |         | Village B                             | 10%  | 30%    | 30%  | 30%  |      |      |
| District Office                            | 5.4                    |             |        |        | 5.4      | 5.4         | 5.4      | 5.4      | 5.4    | 5.4    |         | Village C                             | 10%  | 40%    | 40%  | 10%  |      |      |
| Retreats (Phase 1)                         | 15.1                   |             |        | 15.1   | 15.1     | 15.1        | 15.1     | 15.1     | 15.1   | 15.1   |         | Village D                             | 0%   | 25%    | 25%  | 50%  |      |      |
| Murieta Gardens (Phase 1)                  | 30.5                   |             |        | 30.5   | 30.5     | 30.5        | 30.5     | 30.5     | 30.5   | 30.5   |         | Village E                             | 0%   | 0%     | 20%  | 80%  |      |      |
| Stonehouse Park (Phase 1)                  | 36.2                   |             |        |        | 36.2     | 36.2        | 36.2     | 36.2     | 36.2   | 36.2   |         | Village F                             | 0%   | 2%     | 38%  | 60%  |      |      |
| Escuela Park (Phase 1)                     | 12.07                  |             |        |        | 12.07    | 12.07       | 12.07    | 12.07    | 12.07  | 12.07  |         | Village G                             | 0%   | 0%     | 10%  | 90%  |      |      |
| Phase 1 Alc                                | one 102.07             |             | 550.00 | 595.60 | 652.07   | 652.07      | 652.07   | 652.07   | 652.07 | 652.07 |         | Village H                             | 0%   | 10%    | 25%  | 65%  |      |      |
| Total (Phase                               | e 1) 652.07            |             |        |        |          |             |          |          |        |        |         | Riverview                             | 100% | 0%     | 0%   | 0%   | 0%   | 0%   |
|                                            |                        |             |        |        |          |             |          |          |        |        |         | Lakeview                              | 100% | 0%     | 0%   | 0%   | 0%   | 0%   |
| Village A (Phase 2)                        | 56.5                   |             |        |        | 39.56107 | 8.477373    | 3.956107 | 4.521266 |        |        | 56.5158 | 2 Apartments                          | 70%  | 15%    | 7%   | 8%   |      |      |
| Village B (Phase 2)                        | 64.6                   |             |        |        | 6.457333 | 19.372      | 19.372   | 19.372   |        |        | 64.5733 | 3 Residences of Murieta Hills         | 100% | 0%     | 0%   | 0%   | 0%   | 0%   |
| Village C (Phase 2)                        | 49.6                   |             |        |        | 4.963636 | 19.85455    | 19.85455 | 4.963636 |        |        | 49.6363 | 6 Industrial/Commercial/Residential   | 15%  | 30%    | 30%  | 25%  |      |      |
| Village D (Phase 2)                        | 0.00                   |             |        |        | 0        | 0           | 0        | 0        |        |        |         | 0                                     |      |        |      |      |      |      |
| Village E (Phase2)                         | 0.00                   |             |        |        | 0        | 0           | 0        | 0        |        |        |         | 0                                     |      |        |      |      |      |      |
| Village F (Phase 2)                        | 0.00                   |             |        |        | 0        | 0           | 0        | 0        |        |        | (       | 0 Existing Wastewater Flow (ADWF MGD) |      | 0.3400 |      |      |      |      |
| Village G (Phase 2)                        | 0.00                   |             |        |        | 0        | 0           | 0        | 0        |        |        | (       | 0                                     |      |        |      |      |      |      |
| Village H (Phase 2)                        | 0.00                   |             |        |        | 0        | 0           | 0        | 0        |        |        | (       | 0                                     |      |        |      |      |      |      |
| Riverview                                  | 0.00                   |             |        |        | 0        | 0           | 0        | 0        | 0      |        | (       | 0                                     |      |        |      |      |      |      |
| Lakeview                                   | 0.00                   |             |        |        | 0        | 0           | 0        | 0        | 0      |        | (       | 0                                     |      |        |      |      |      |      |
| Apartments (Phase 2)                       | 23.8                   |             |        |        | 16.66    | 3.57        | 1.666    | 1.904    |        |        | 23.     | 8                                     |      |        |      |      |      |      |
| Residences of Murieta Hills (Phase 2)      | 73.8                   |             |        |        | 73.8     | 0           | 0.00     | 0.00     | 0      | 0      | 73.     | 8                                     |      |        |      |      |      |      |
| Industrial/Commercial/Residential (Phase 2 | 2) 50.9                |             |        |        | 7.64     | 15.27       | 15.27    | 12.73    |        |        | 50.9    | 9                                     |      |        |      |      |      |      |
| Phase 2 Alc                                | one 319.2              |             | 0.0    | 0      | 149.077  | 66.54392    | 60.12    | 43.49    | 0      | 0      |         |                                       |      |        |      |      |      |      |
| Total (Phase                               | e 2) 971.29            | SUM         | 550    | 595.60 | 801.14   | 718.61      | 712.19   | 695.55   | 652.07 | 652.07 |         |                                       |      |        |      |      |      |      |
|                                            | COMPO                  | DUNDING SUM | 550    | 595.60 | 801.14   | 867.69      | 927.81   | 971.29   | 971.29 | 971.29 |         |                                       |      |        |      |      |      |      |

### WASTEWATER PRODUCTION TIMELINE

|                                             |                  |                 |        | D      | evelopmer | t Timeline |        |        |        |        |
|---------------------------------------------|------------------|-----------------|--------|--------|-----------|------------|--------|--------|--------|--------|
|                                             | Waswater Product | tion (AFY)      | 2016   | 2018   | 2020      | 2025       | 2030   | 2035   | 2040   | 2045   |
| North & South Golf Courses (Current)        | 380.87           |                 | 380.87 | 380.87 | 380.87    | 380.87     | 380.87 | 380.87 | 380.87 | 380.87 |
| Infill                                      | 56.0             |                 |        | 56.0   | 56.0      | 56.0       | 56.0   | 56.0   | 56.0   | 56.0   |
| North Main Gate Entrance (Phase 1)          | 0.0              |                 |        |        | 0.0       | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    |
| District Office                             | 0.0              |                 |        |        | 0.0       | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    |
| Retreats (Phase 1)                          | 19.8             |                 |        | 19.8   | 19.8      | 19.8       | 19.8   | 19.8   | 19.8   | 19.8   |
| Murieta Gardens (Phase 1)                   | 71.9             |                 |        | 71.9   | 71.9      | 71.9       | 71.9   | 71.9   | 71.9   | 71.9   |
| Stonehouse Park (Phase 1)                   | 0.0              |                 |        |        | 0.0       | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    |
| Escuela Park (Phase 1)                      | 0.0              |                 |        |        | 0.0       | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    |
| Phase 1 Alon                                | ie 147.6         |                 | 380.87 | 528.51 | 528.51    | 528.51     | 528.51 | 528.51 | 528.51 | 528.51 |
| Total (Phase 1                              | 1) 528.5         |                 |        |        |           |            |        |        |        |        |
| Village A (Phase 2)                         | 39.3             |                 |        |        | 27.50     | 5.89       | 2.75   | 3.14   |        |        |
| Village B (Phase 2)                         | 39.3             |                 |        |        | 3.93      | 11.79      | 11.79  | 11.79  |        |        |
| Village C (Phase 2)                         | 30.6             |                 |        |        | 3.06      | 12.23      | 12.23  | 3.06   |        |        |
| Village D (Phase 2)                         | 9.9              |                 |        |        | 0.00      | 2.47       | 2.47   | 4.94   |        |        |
| Village E (Phase 2)                         | 10.1             |                 |        |        | 0.00      | 0.00       | 2.02   | 8.09   |        |        |
| Village F (Phase 2)                         | 22.3             |                 |        |        | 0.00      | 0.45       | 8.49   | 13.41  |        |        |
| Village G (Phase 2)                         | 12.5             |                 |        |        | 0.00      | 0.00       | 1.25   | 11.22  |        |        |
| Village H (Phase 2)                         | 28.7             |                 |        |        | 0.00      | 2.87       | 7.18   | 18.66  |        |        |
| Riverview                                   | 32.9             |                 |        |        | 32.93     | 0.00       | 0.00   | 0.00   | 0.00   |        |
| Lakeview                                    | 21.4             |                 |        |        | 21.40     | 0.00       | 0.00   | 0.00   | 0.00   |        |
| Apartments (Phase 2)                        | 23.3             |                 |        |        | 16.30     | 3.49       | 1.63   | 1.86   |        |        |
| Residences of Murieta Hills (Phase 2)       | 46.6             |                 |        |        | 46.58     | 0.00       | 0.00   | 0.00   | 0.00   | 0.00   |
| Industrial/Commercial/Residential (Phase 2) | 37.6             |                 |        |        | 5.65      | 11.29      | 11.29  | 9.41   |        |        |
| Phase 2 Alon                                | ie 354.5         |                 | 0.0    | 0.00   | 157.35    | 50.48      | 61.10  | 85.58  | 0.00   | 0.00   |
| Total (Phase 2                              | 2) 883.0         | SUM             | 380.87 | 528.51 | 685.86    | 578.99     | 589.61 | 614.09 | 528.51 | 528.51 |
|                                             |                  | COMPOUNDING SUM | 380.87 | 528.51 | 685.86    | 736.34     | 797.44 | 883.02 | 883.02 | 883.02 |

### Table 1. Projected Average Annual Recyled Water Demands and Scenarios

| Bronasad Davidonments and Bouse Area        | Projected RW Demand       | Scenarios (AFY)         |                                                      |                                          |  |  |  |  |  |  |  |  |
|---------------------------------------------|---------------------------|-------------------------|------------------------------------------------------|------------------------------------------|--|--|--|--|--|--|--|--|
| Proposed Developments and Reuse Area        | (AFY)                     | 1- WDR and RW Standards | 2- Public Area Focus, Limited to Most Cost Effective | 3-Scenario 2 Plus Riverview and Lakeview |  |  |  |  |  |  |  |  |
| North and Sourth Golf Courses (Current)     | 550                       | 550                     | 550                                                  | 550                                      |  |  |  |  |  |  |  |  |
| North Main Gate Entrance (Phase 1)          | 2.8                       | 2.8                     | 2.8                                                  | 2.8                                      |  |  |  |  |  |  |  |  |
| District Office (Phase 1)                   | 5.4                       | 5.4                     | 5.4                                                  | 5.4                                      |  |  |  |  |  |  |  |  |
| Stonehouse Park (Phase 1)                   | 36.2                      | 36.2                    | 36.2                                                 | 36.2                                     |  |  |  |  |  |  |  |  |
| Escuela Park (Phase 1)                      | 12.1                      | 12.1                    | 12.1                                                 | 12.1                                     |  |  |  |  |  |  |  |  |
| Commercial Loop (TBD)                       | _                         |                         | 10                                                   | 10                                       |  |  |  |  |  |  |  |  |
| Retreats (Phase 1)                          | 15.1                      | 15.1                    | 15.1                                                 | 15.1                                     |  |  |  |  |  |  |  |  |
| Murieta Gardens (Phase 1)                   | 30.5                      | 30.5                    | 30.5                                                 | 30.5                                     |  |  |  |  |  |  |  |  |
| Village A (Phase 2)                         | 56.5                      | 56.5                    |                                                      |                                          |  |  |  |  |  |  |  |  |
| Village B (Phase 2)                         | 64.6                      | 64.6                    |                                                      |                                          |  |  |  |  |  |  |  |  |
| Village C (Phase 2)                         | 49.6                      | 49.6                    | 49.6                                                 | 49.6                                     |  |  |  |  |  |  |  |  |
| Apartments (Phase 2)                        | 23.8                      | 23.8                    | 23.8                                                 | 23.8                                     |  |  |  |  |  |  |  |  |
| Residences of Murieta Hills (Phase 2)       | 73.8                      | 73.8                    | 73.8                                                 | 73.8                                     |  |  |  |  |  |  |  |  |
| Industrial/Commercial/Residential (Phase 2) | 50.9                      | 50.9                    | 50.9                                                 | 50.9                                     |  |  |  |  |  |  |  |  |
| Village D                                   | _                         |                         |                                                      |                                          |  |  |  |  |  |  |  |  |
| Village E                                   |                           |                         |                                                      |                                          |  |  |  |  |  |  |  |  |
| Village F                                   |                           |                         |                                                      |                                          |  |  |  |  |  |  |  |  |
| Village G                                   |                           |                         |                                                      |                                          |  |  |  |  |  |  |  |  |
| Village H                                   |                           |                         |                                                      |                                          |  |  |  |  |  |  |  |  |
| Riverview                                   | 22.4                      |                         |                                                      | 22.4                                     |  |  |  |  |  |  |  |  |
| Lakeview                                    | 15.8                      |                         |                                                      | 15.8                                     |  |  |  |  |  |  |  |  |
| Sum of Prop                                 | osed Reuse Area Demand    | s 971                   | 860                                                  | 898                                      |  |  |  |  |  |  |  |  |
| Projected I                                 | Recycled Water Production | n 883                   | 883                                                  | 883                                      |  |  |  |  |  |  |  |  |
| Differer                                    | nce (Excess Recycled Wate | r -88                   | 23                                                   | -15                                      |  |  |  |  |  |  |  |  |

Notes:

Developments with phase descriptions (i.e., Phase 1 and 2) reflect proposed reuse areas described in the District's Waste Discharge Requirements and Recycled Water Standards

### ADWF and Developments Comparison

| Conditions                        | Source                                 | Numbe   | r of Connections Wastewa | ter Flow, (ADWF MGD) R | ecycled Water Demand (AFY) |         |         |         |    |
|-----------------------------------|----------------------------------------|---------|--------------------------|------------------------|----------------------------|---------|---------|---------|----|
| Existing                          | District Engineer RFP                  |         | 2500                     | 0.37653                | 0                          |         |         |         |    |
| Phase 1 - Connected Prior to 2020 | Current Activities                     |         |                          |                        |                            |         |         |         |    |
| Murieta Gardens                   |                                        | 305     |                          |                        |                            |         |         |         |    |
| The Retreats                      |                                        | 84      |                          |                        |                            |         |         |         |    |
| Infill - 0.05 MGD ADWF            |                                        | 238     |                          |                        |                            |         |         |         |    |
| Phase 2 - Per WSA                 | per Water Supply Assessment, Table 2-1 |         |                          |                        |                            |         |         |         |    |
|                                   | 2016                                   | 2018    | 2020                     | 2025                   | 2030                       | 2035    | 2040    | 2045    |    |
| Village A                         |                                        |         | 117                      | 25                     | 12                         | 13      |         |         | 16 |
| Village B                         |                                        |         | 17                       | 50                     | 50                         | 50      |         |         | 16 |
| Village C                         |                                        |         | 13                       | 52                     | 52                         | 13      |         |         | 13 |
| Village D                         |                                        |         | 0                        | 10                     | 11                         | 21      |         |         | 4  |
| Village E                         |                                        |         | 0                        | 0                      | 9                          | 34      |         |         | 4  |
| Village F                         |                                        |         | 0                        | 2                      | 36                         | 57      |         |         | 9  |
| Village G                         |                                        |         | 0                        | 0                      | 5                          | 48      |         |         | 5  |
| Village H                         |                                        |         | 0                        | 13                     | 32                         | 85      |         |         | 13 |
| Industrial/Commercial/Residential |                                        |         | 4                        | 8                      | 7                          | 6       |         |         | 2  |
| Residences of MH                  |                                        |         | 0                        | 0                      | 20                         | 79      | 79      | 20      | 19 |
| Riverview                         |                                        |         | 0                        | 14                     | 42                         | 42      | 42      |         | 14 |
| Lakeview                          |                                        |         | 0                        | 9                      | 30                         | 30      | 30      |         | 9  |
| Apartments                        |                                        |         | 119                      | 25                     | 12                         | 14      |         |         | 17 |
|                                   |                                        | 627     | 270                      | 208                    | 318                        | 492     | 151     | 20      |    |
|                                   | 2500                                   | 3,127   | 3397                     | 3605                   | 3923                       | 4415    | 4566    | 4586    |    |
| existing ADWF +                   |                                        |         |                          |                        |                            |         |         |         |    |
| Proposed Connection ADWF          |                                        |         |                          |                        |                            |         |         |         |    |
| (compounded each 5 years)         | 0.37653                                | 0.50825 | 0.56495                  | 0.60863                | 0.67541                    | 0.77873 | 0.81044 | 0.81464 |    |

| connections            | 2,502   | 2,902 | 3,629    | 3,854    | 4,119    | 4,488    | 4,488   | 4,488   |
|------------------------|---------|-------|----------|----------|----------|----------|---------|---------|
| ADWF                   | 0.3400  |       | 0.6243   | 0.6716   | 0.7272   | 0.8048   | 0.8048  | 0.8048  |
| Connections DIFFERENCE | -2      |       | -231     | -249     | -195     | -73      | 78      | 98      |
| ADWF DIFFERENCE        | 0.03653 |       | -0.05939 | -0.06302 | -0.05182 | -0.02609 | 0.00562 | 0.00982 |

| Projections to 2020 |             | Projections from 2020 to 2030 |                | Projections from 20 | 30 to 2035  | Projections from 203 | 5 to 2045   |
|---------------------|-------------|-------------------------------|----------------|---------------------|-------------|----------------------|-------------|
| assumption          | 9.75%       | assumption                    | 1.25%          | assupmtion          | 1.65%       | assumption           | 0.00%       |
| year                | connections | year                          | connections    | year                | connections | year                 | connections |
| 2016                | 2,502       | 2020                          | 3,629.00       | 2030                | 4,107.00    | 2035                 | 4,458.00    |
| 2017                | 2,745.95    | 2021                          | 3,674.36       | 2031                | 4,174.77    | 2036                 | 4,458.00    |
| 2018                | 3,013.67    | 2022                          | 3,720.29       | 2032                | 4,243.65    | 2037                 | 4,458.00    |
| 2019                | 3,307.51    | 2023                          | 3,766.80       | 2033                | 4,313.67    | 2038                 | 4,458.00    |
| 2020                | 3,629.99    | 2024                          | 3,813.88       | 2034                | 4,384.84    | 2039                 | 4,458.00    |
|                     |             | 2025                          | 3,861.55       | 2035                | 4,457.19    | 2040                 | 4,458.00    |
|                     |             | 2026                          | 3,909.82       |                     |             | 2041                 | 4,458.00    |
|                     |             | 2027                          | 3,958.70       |                     |             | 2042                 | 4,458.00    |
|                     |             | 2028                          | 4,008.18       |                     |             | 2043                 | 4,458.00    |
|                     |             | 2029                          | 4,058.28       |                     |             | 2044                 | 4,458.00    |
|                     |             | 2030                          | 4,109.01       |                     |             | 2045                 | 4,458.00    |
| differem            | ce 1,128    | (                             | lifferemce 480 | differemce          | 350         |                      |             |





|          |           | Recycled Water Demands            |                     | 8-hr  | 9-hr  |
|----------|-----------|-----------------------------------|---------------------|-------|-------|
| Phase 1  | North     | North Main Gate Entrance          | 9,428               | 37    | 33    |
| Equaliza | ation Bas | in District Office                | 9,120               | 19    | 17    |
|          | North     | Retreats                          | 63,360              | 132   | 117   |
|          | North     | Murieta Gardens                   | 101,280             | 211   | 188   |
|          | North     | Stonehouse Park                   | 120,480             | 251   | 223   |
|          | North     | Escuela Park                      | 120,480             | 251   | 223   |
| 1        | North     | North Golf Course                 |                     | 2,104 | 1,871 |
| :        | South     | South Golf Course                 |                     | 1,915 | 1,703 |
|          |           |                                   | Phase 1 Demand      | 4,920 | 4,375 |
|          |           |                                   | Capacity            | 6,246 | 5,552 |
| Phase 2  |           |                                   |                     |       |       |
| I        | North     | Village A                         | 214,080             | 446   | 396   |
| I        | North     | Village C                         | 165,120             | 344   | 306   |
|          | North     | Village B                         | 188,160             | 392   | 348   |
| I        | North     | Apartments                        | 80,160              | 167   | 148   |
| I        | North     | Residences of Murieta Hills       | 248,640             | 518   | 460   |
|          | North     | Industrial/Commercial/Residential | 171,360             | 357   | 317   |
|          |           |                                   | Phase 2 Subtotal    | 2,224 | 1,975 |
|          |           |                                   | Phase 1 and 2 Total | 7,144 | 6,350 |
|          |           |                                   | Capacity            | 6,246 | 5,552 |

Difference (Supplemental Potable Water), gpm 898 798 Difference (Supplemental Potable Water), gallons 431,258 430,718 **RW Production Sources** WWRP

Subtotal

Potable Water Supplementation

Reduced GC Demand (assumed)

2,082

896

1000

943

3,167 1,519,978 1,186,238

2,978

2,082

2,878

796

1000

496 452,458 268,018 Phase 1

2,471 Phase 2

### RW Annual and Average Day RW Demands and Wastewater Production

|                                                   | RW Annual Demand (AFY) | RW Average Day Demand (AF/day) | RW Average Day Demand (MGD) | Waswater Production (AFY) |
|---------------------------------------------------|------------------------|--------------------------------|-----------------------------|---------------------------|
| 1 North & South Golf Courses (Current)            | 550                    | 2.782                          | 0.9065                      | 381                       |
| 2 Infill                                          | 0                      |                                |                             | 56                        |
| 3 North Main Gate Entrance (Phase 1)              | 2.8                    | 0.014                          | 0.0046                      | 0                         |
| 4 District Office                                 | 5.4                    | 0.027                          | 0.0089                      | 0                         |
| 5 Retreats (Phase 1)                              | 15.1                   | 0.076                          | 0.0249                      | 19.8                      |
| 6 Murieta Gardens (Phase 1)                       | 30.5                   | 0.154                          | 0.0503                      | 71.9                      |
| 7 Stonehouse Park (Phase 1)                       | 36.2                   | 0.183                          | 0.0597                      | 0                         |
| 8 Escuela Park (Phase 1)                          | 12.07                  |                                |                             | 0                         |
| Phase 1 Alone                                     | 102                    |                                |                             | 148                       |
| Total (Phase 1)                                   | 652                    |                                | 1.05                        | 529                       |
| % Increase from Current                           | 19                     |                                | 16                          | 39                        |
| 9 Village A (Phase 2)                             | 56.5                   | 0.286                          | 0.0931                      | 39.3                      |
| 10 Village B (Phase 2)                            | 64.6                   | 0.327                          | 0.1064                      | 39.3                      |
| 11 Village C (Phase 2)                            | 49.6                   | 0.251                          | 0.0818                      | 30.6                      |
| 12 Village D (Phase 2)                            | 0                      |                                | 0                           | 9.9                       |
| 13 Village E (Phase 2)                            | 0                      |                                | 0                           | 10.1                      |
| 14 Village F (Phase 2)                            | 0                      |                                | 0                           | 22.3                      |
| 15 Village G(Phase 2)                             | 0                      |                                | 0                           | 12.5                      |
| 16 Village H (Phase 2)                            | 0                      |                                | 0                           | 28.7                      |
| 17 Riverview                                      | 0                      | 0.000                          | 0                           | 32.9                      |
| 18 Lakeview                                       | 0                      | 0.000                          | 0                           | 21.4                      |
| 19 Apartments (Phase 2)                           | 23.8                   | 0.120                          | 0.0392                      | 23.3                      |
| 20 Residences of Murieta Hills (Phase 2)          | 73.8                   | 0.373                          | 0.1216                      | 46.6                      |
| 21 Industrial/Commercial/Residential (Phase 2)    | 50.9                   | 0.257                          | 0.0839                      | 37.6                      |
| Phase 2 Alone                                     | 319                    |                                |                             | 355                       |
| Total (Phase 2)                                   | 971                    |                                | 1.58                        | 883                       |
| % Increase from Current                           | 77                     |                                | 74                          | 132                       |
| Balance of Average Day Demands and Sources        |                        |                                |                             |                           |
|                                                   |                        | MGD                            |                             |                           |
| WWRP Capacity (Current)                           |                        | 2.3                            |                             |                           |
| WWRP Capacity (Phase 1)                           |                        | 3.0                            |                             |                           |
| Min. Supplemental Potable Water Requirements (AFY | )                      |                                |                             |                           |
| Current                                           |                        | 169                            |                             |                           |

Phase 1124Phase 288WWRP Capacity Difference after Phase 11.95WWRP Capacity Difference after Phase 21.42

| 94.5  |
|-------|
| 81.7  |
| 63.3  |
| 107.6 |
|       |
| 77.1  |
| 182.3 |
|       |
| 57.4  |
| 41.6  |
| 17.8  |
| 168.7 |
| 39.5  |

### Notes

1 Current golf course demands and ADWF of 0.34 MGD as described in Retreats West Capacity Certification Letter

- **2** To be determined; 0.05 MGD ADWF allocation
- 3 RW Demand obtained from Table 5 of the June 2016 Recycled Water Modeling Study Report
- 4 RW Demand obtained from Table 5 of the June 2016 Recycled Water Modeling Study Report
- 5 Values obtained from latest K/J comments on Retreatas North and East Sewer Study (July 19, 2016) and Retreats West Capacity Certification Letter

**6** Values obtained from May 15, 2016 Murieta Gardens I & II Sewer Study currently under review

- 7 Value obtained from Table 5 of the June 2016 Recycled Water Modeling Study Report
- 8 RW obtained from Table 5; Escuela Park does not include any homes and occupies the entire site; wastewater production = 0

9 Recycled Water Demand derived from Table 5-1 of the Title XVI Recycled Water Feasibility Study and ratio of current (167) to previous (177) future number of residential homes. Wastewaster production based on 210 gpd/connection
10 Recycled Water Demand derived from Table 5-1 of the Title XVI Recycled Water Feasibility Study and ratio of current (167) to previous (120) future number of residential homes. Wastewaster production based on 210 gpd/connection
11 Recycled Water Demand derived from Table 5-1 of the Title XVI Recycled Water Feasibility Study and ratio of current (130) to previous (110) future number of residential homes. Wastewaster production based on 210 gpd/connection
11 Recycled Water Demand derived from Table 5-1 of the Title XVI Recycled Water Feasibility Study and ratio of current (130) to previous (110) future number of residential homes. Wastewaster production based on 210 gpd/connection
12 N/A

13 N/A

14 N/A

**15** N/A

16 N/A

17 RW Demand obtained from Table 5 of the June 2016 Recycled Water Modeling Study Report. Wastewater production value obtained from Table 5

18 RW Demand obtained from Table 5 of the June 2016 Recycled Water Modeling Study Report. Wastewater production value obtained from Table 5

**19** Values obtained from Table 5 of the June 2016 Recycled Water Modeling Study Report

20 Values obtained from Table 5 of the June 2016 Recycled Water Modeling Study Report

21 Values obtained from Table 5 of the June 2016 Recycled Water Modeling Study Report
#### Maximum Month/Day Demands

| waximum wonth/Day Demands                   |       |          |
|---------------------------------------------|-------|----------|
|                                             | MGD   | AF/Month |
| North&South Golf Courses (Current)          | 1.852 | 172.9    |
| North Main Gate Entrance (Phase 1)          | 0.009 | 0.9      |
| District Office                             | 0.018 | 1.7      |
| Retreats (Phase 1)                          | 0.051 | 4.7      |
| Murieta Gardens (Phase 1)                   | 0.103 | 9.6      |
| Stonehouse Park (Phase 1)                   | 0.122 | 11.4     |
| Escuela Park (Phase 1)                      | 0.041 | 3.8      |
| Total (Phase 1)                             | 2.20  | 205.0    |
| Village A (Phase 2)                         | 0.190 | 17.8     |
| Village B (Phase 2)                         | 0.217 | 20.3     |
| Village C (Phase 2)                         | 0.167 | 15.6     |
| Apartments (Phase 2)                        | 0.080 | 7.5      |
| Residences of Murieta Hills (Phase 2)       | 0.248 | 23.2     |
| Industrial/Commercial/Residential (Phase 2) | 0.171 | 16.0     |
| Total (Phase 2)                             | 3.27  | 305      |
| Maximum Month/Day Sources                   |       |          |
|                                             | MGD   |          |
| WWRP Capacity (Current)                     | 2.3   |          |
| WWRP Capacity (Phase 1)                     | 3.0   |          |
| Supplemental Potable Water Requirements (N  | /IGD) |          |
| Current                                     | 0.000 |          |
| Phase 1                                     | 0.00  | 0        |
| Phase 2                                     | 0.27  |          |

| 6.73848<br>204.241   | 16 Percent increase over existing GC demands |
|----------------------|----------------------------------------------|
| 10.03737<br>304.2292 | 43 Percent increase over existing GC demands |
| No supplemental      | water required                               |

No supplemental water required Production (2.3 MGD) > Demand (2.2 MGD); no supplemental water required Production (3.0 MGD) < Demand (3.27 MGD); supplemental water required -> 230,000 gallons per day or 21.5 AF/month

430000 1.319711 30.30966

#### IRRIGATION DEMANDS AND SOURCES Sources of Recycled Water

|                                                             |                     | Capacity | (MGD)    | Notes   |
|-------------------------------------------------------------|---------------------|----------|----------|---------|
| Location                                                    | Volume (MG)         | 8-hr IRR | 9-hr IRR |         |
| WWRP - Equalization Basin / North RW Pump Station (Current) | 1.8                 | 1,596    | 1,596    |         |
| WWRP - Equalization Basin / North RW Pump Station (Phase 1) | 1.8                 | 2,082    | 2,082    |         |
| Lookout Hill Tank (Phase 1)                                 | 0.1                 | 104      | 93       | Standa  |
| Bass Lake Tank (Phase 2)                                    | 0.5                 | 521      | 463      | Standa  |
| Supplemental Potable Water Supply (Phase 1)                 |                     | 898      | 798      |         |
| Golf Course Ponds (reduced rate of RW supply during IRR)    |                     |          |          |         |
| Bass Lake (Phase 1)                                         | 12.1                | 2,104    | 1,870    | 6.2 acı |
| Lakes 10, 11, 16 and 17 (Phase 2)                           | 15.6                | 1,878    | 1,669    | 8.3 acı |
| Total (Current                                              | t)                  | 1,596    | 1,596    |         |
| Total (Future - Phase 1                                     | L)                  | 5,189    | 4,843    |         |
| Total (Future - Phase 2                                     | 2)                  | 7,588    | 6,975    |         |
| Peak Demands of Recycled Water                              |                     | Deman    | d (gpm)  |         |
|                                                             | Volume (gpd)        | 8-hr IRR | 9-hr IRR |         |
| North Golf Course (Current)                                 | 1,010,138           | 2,104    | 1,871    |         |
| South Golf Course (Current)                                 | 841,782             | 1,754    | 1,559    |         |
| North Main Gate Entrance (Phase 1)                          | 9,428               | 20       | 17       |         |
| District Office                                             | 18,182              | 38       | 34       |         |
| Retreats (Phase 1)                                          | 50,844              | 106      | 94       |         |
| Murieta Gardens (Phase 1)                                   | 102,697             | 214      | 190      |         |
| Stonehouse Park (Phase 1)                                   | 121,890             | 254      | 226      |         |
| Escuela Park (Phase 1)                                      | 40,630              | 85       | 75       |         |
|                                                             | Total (Phase 1)     | 4,574    | 4,066    |         |
| Village A (Phase 2)                                         | 190,296             | 396      | 352      |         |
| Village B (Phase 2)                                         | 217,427             | 453      | 403      |         |
| Village C (Phase 2)                                         | 167,132             | 348      | 310      |         |
| Apartments (Phase 2)                                        | 80,138              | 167      | 148      |         |
| Residences of Murieta Hills (Phase 2)                       | 248,494             | 518      | 460      |         |
| Industrial/Commercial/Residential (Phase 2)                 | 171,387             | 357      | 317      |         |
| Tot                                                         | tal (Phase 1 and 2) | 6,813    | 6,056    |         |

6 2 Standards: 50% avaliable for production/meeting IRR demand 8 Standards: 50% avaliable for production/meeting IRR demand

6.2 acres, 6 ft average depth. Capacity based on 6 in draw down (happens to balance with feed rates)
8.3 acres total, various depths. Capacity based on 4 inch draw down (close to balancing with feed rates)

Kevin Kennedy

| From:    | Paul Siebensohn <psiebensohn@ranchomurietacsd.com></psiebensohn@ranchomurietacsd.com> |
|----------|---------------------------------------------------------------------------------------|
| Sent:    | Tuesday, July 19, 2016 3:46 PM                                                        |
| To:      | Kevin Kennedy                                                                         |
| Subject: | Pond volumes                                                                          |

1

fyi...I put this together a while ago for all of our bodies of water.

|     |                            | Surface Area (acres)                  |                |             |            |        |
|-----|----------------------------|---------------------------------------|----------------|-------------|------------|--------|
| 1)  | Calero                     | 110 -114 acres, 2622 acre-feet volume |                |             |            |        |
| 2)  | Chesbro                    | 62- 64 acres, 1130.7 acre-feet        |                |             |            |        |
| 3)  | Clementia                  | 71-76 acres, 907.1 acre-feet          | —              |             |            |        |
| 4)  | Laguna Joaquin             | 21.53 – 24.07 acres, 122 acre-feet    |                |             |            |        |
| 5)  | Basin 5                    | 1.3 acres at 16.5 foot average depth  |                |             |            |        |
| 6)  | Guadalupe                  | 1.3 acres                             | area, acres av | e depth, vo | ol, AF vo  | ol, MG |
| 7)  | Bass Lake                  | 6.2 acres, 6 foot average depth       | 6.2            | 6           | 37.2       | 12     |
| 8)  | Hole 10 North Pond         | 1.0 acres, 4 foot average depth       |                |             |            |        |
| 9)  | 6B Basin                   | 0.2 acres, 4.6 foot average depth     |                |             |            |        |
| 10) | South Hole 10 Pond         | 1.4 acres, 5 feet average depth       | 14             | 5           | 7          | 2      |
| 11) | South Hole 11 Pond         | 6.3, 5.5 foot average depth           | 6.3            | 5.5         | ,<br>34.65 | 11.    |
| 12) | South Hole 6 North<br>Pond | 0.4 and 0.28 acres                    |                |             |            |        |
| 13) | South Hole 16 Pond         | 0.34 acres, >10 foot depth            | 0 34           | 10          | 3.4        | 1      |
| 14) | South Hole 17 Pond         | 0.27 acres, >10 foot depth            | 0.27           | 10          | 2.7        | 0.     |
| 15) | North Hole 2 Pond          | 0.34 acres, 3.4 foot average depth    | 8.3            |             |            | 15     |

Paul Sigbgnaohn Director of Field Operations Rancho Murieta CSD ph.(918)354-3700

| _      | Monthly AF Demand | % of Total Demand | AF/Mnth | # days/Mnth | MGD      |
|--------|-------------------|-------------------|---------|-------------|----------|
| 15-Jan | 0                 | 0.0               | 0.0     | 31          | 0        |
| 14-Feb | 0                 | 0.0               | 0.0     | 28          | 0        |
| 15-Mar | 2.5               | 1.8               | 15.3    | 31          | 0.160641 |
| 15-Apr | 5                 | 3.5               | 30.6    | 30          | 0.331991 |
| 15-May | 15                | 10.6              | 91.7    | 31          | 0.963845 |
| 15-Jun | 23                | 16.3              | 140.6   | 30          | 1.527159 |
| 15-Jul | 27.5              | 19.5              | 168.1   | 31          | 1.767049 |
| 14-Aug | 28                | 19.9              | 171.2   | 31          | 1.799177 |
| 14-Sep | 20                | 14.2              | 122.3   | 30          | 1.327964 |
| 14-Oct | 12.5              | 8.9               | 76.4    | 31          | 0.803204 |
| 14-Nov | 7.5               | 5.3               | 45.9    | 30          | 0.497987 |
| 14-Dec | 0                 | 0.0               | 0.0     | 31          | 0        |
|        | 141               | 100               | 862     | 365         |          |





# **Purpose and Status**

Describe Phase 1 and Buildout of District's Recycled Water Program with respect to existing and future conditions; development projections, phasing and recycled water use areas; recommended improvements and descriptions (including costs and timeline) and implementation plan.

- Draft Report:
- Board Approval:

Review and comment February or March, 2017



| Phase<br>Phase 1 | Proposed Developments<br>Murieta Gardens<br>Retreats (North, West and East)                                                                                                                                     | Proposed Recycled Water Use Areas<br>Murieta Gardens <sup>a</sup> [U, R]<br>Retreats <sup>a</sup> (North, West and East) [U]<br>Stonehouse Park <sup>b</sup> (existing) [U]<br>Escuela Park <sup>b</sup> (existing) [U]<br>Main Northgate <sup>b</sup> (existing) [U]<br>District Office <sup>b</sup> (existing) [U] |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buildout         | Residences of Murieta Hills<br>Apartments<br>Industrial/Commercial/Residential<br>Village A<br>Village B<br>Village C<br>Village D<br>Village E<br>Village F<br>Village G<br>Village H<br>Riverview<br>Lakeview | Commercial Loop*<br>Residences of Murieta Hills* [U,R]<br>Apartments* [U]<br>Industrial/Commercial/Residential* [U,R]<br>Village A* [R]<br>Village B* [R]<br>Village C* [R]                                                                                                                                          |



| Listing Derrylewit         Construct North & Stands of Courses (-250 of Cour | Development/Proposed<br>Recycled Water Use Area          | Description                                                                                                               | Projected<br>RW Demand<br>(AFY) | Wastewater<br>Production<br>(AFY) | Current Capacity:                                                                                               | 3,265 ERUs              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------|
| Build procession         Build procession<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Existing Recycled Water Use Areas                        |                                                                                                                           | ()                              | ()                                |                                                                                                                 |                         |
| General         18 Abola gal Converso         18 Abola gal Converso         550         180.0           Yan Usek Rank         Field 1 (-22.a)         316         380.0           Haim Nordigate         0.05 MO2 allocation screened         350         76.0         360.0           Haim Nordigate         0.05 MO2 allocation screened         0         560         76.0           Haim Nordigate         0.05 MO2 allocation screened         0         560         76.0           Nordisa Carbon         81 readiation and the recycled water         2.8         0.0         Muriesta Gardens           Nordisa Carbon         81 readiation and the recycled water         5.4         0.0         Residential         78 ERUs           Nordisa Carbon         100 recented water         5.4         0.0         Commercial         2.27 ERU           Remains refright (stars publ)         Conversion to recycled water         5.4         0.0         Subtotal         3.89 ERU           Commercial Loog (to be developed)         2.00 residential water         5.60         5.00         1.00           Village 0         1.67 residential water         5.60         5.00         1.00         1.00           Village 0         1.67 residential water         6.46         7.80         7.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Exising Development<br>Rancho Muriata North & South Golf |                                                                                                                           |                                 |                                   | Existing                                                                                                        | 2 604 FRUs              |
| Van Vlack Ranch       Pield 1 (-494c), Fuid 2 (-526c), 215       215         Steb Tetal       550° / 765°       380         Steb Tetal       550° / 765°       380         Main Northgete       0.05000 allocation assumd       0         Dimers of Dise.       Conversion to recycled water       6.4         Main Northgete       Conversion to recycled water       6.2         Main Northgete       Conversion to recycled water       6.2         Main Northgete       Proceedia coversion to recycled water       6.2         Commercial Loagy (no be developed)       Proceedia coversion to recycled water       6.2         Phase 1 be Tetal       500° / 600°       500         Vidag 2       160° restification into       6.6         Vidag 2       160° restification into <td< td=""><td>Courses</td><td>18-hole golf courses (~250 ac)</td><td>550</td><td>380.9</td><td>Existing</td><td>2,004 2105</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Courses                                                  | 18-hole golf courses (~250 ac)                                                                                            | 550                             | 380.9                             | Existing                                                                                                        | 2,004 2105              |
| Sub Trad         550* / 765**         240           Main Perduat         0.05 MOD allocation assumed         0         56.0           Main Nerduate         0.0000 allocation assumed         0.0         0.0           Main Nerduate         0.00000 allocation assumed         0.0         0.0           Main Nerduate         Nerduate         0.000000 allocation assumed         0.0           Main Nerduate         Nerduate         0.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Van Vleck Ranch                                          | Field 1 (~49ac), Field 2 (~25ac),<br>Field 3 (~22 ac)                                                                     | 215                             |                                   |                                                                                                                 |                         |
| Phase 1 Proposed Expanded Recycled Water Us Aves (2-2016-2020)       Main Nerdigate       Operations Office       Remaining       Reprise Office       Remaining       Remaining       Remaining       Remaining       Stread       Nings D       107 residential units       0       Nings C       110 residential units       0       Nings D       121 residential units       0       122 residential units       0       123 residential units       0       124 residential units       0 <t< td=""><td>Sub Total</td><td></td><td>550" / 765**</td><td>380</td><td>Development (Sewer Studie</td><td>25)</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sub Total                                                |                                                                                                                           | 550" / 765**                    | 380                               | Development (Sewer Studie                                                                                       | 25)                     |
| Intell       0.05 MOD allocation assumed       0       56.0         Main Nerdigate       Conversion to recycled water       2.8       0.0         Dismes Office       Conversion to recycled water       5.4       0.0         Rescale Section Section Section to recycled water       5.4       0.0         Murices Data and Weet)       Strendendati usins       15.1       15.4         Murices Data and Weet)       Strendendati usins       15.1       15.4         Strendendati usins       7.1 sequences       Commercial 2.27 ERU         Strendendati usins       16.3       0.0         Strendendati usins       16.4       0.0         Strendendati usins       16.4       0.0         Strendendati usins       16.4       0.0         Strendendati usins       16.4       0.0         Strendendati usins       10.2       144         Phase 1 Processid Expanded Recycled Water Using Area 1002       144         Phase 2 Processid Expanded Recycled Water Using Area 1002       144         Subtotal       389 ERU         Village 0       142 rescleantal using       0         Village 1       142 rescleantal using       0         Village 1       142 rescleantal using       0 <t< td=""><td>Phase 1 Proposed Expanded Recycled</td><td>Water Use Areas (~2016-2020)</td><td></td><td></td><td>Bevelopment (Sewer Studie</td><td>-57</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Phase 1 Proposed Expanded Recycled                       | Water Use Areas (~2016-2020)                                                                                              |                                 |                                   | Bevelopment (Sewer Studie                                                                                       | -57                     |
| Name         Conversion to recycled water         2.8         0.0           Reference (Grand Conversion to recycled water         2.4         0.0           Reference (Grand Conversion to recycled water         2.4         0.0           Reference (Grand Conversion to recycled water         2.4         0.0           Reference (Grand Conversion to recycled water         2.3         0.0           Reference (Grand Conversion to recycled water         2.3         0.0           Rescale Conversion to recycled water         1.2.1         0.0           Rescale Conversion to recycled water         1.2.1         0.0           Present Conversion to recycled water         1.2.1         0.0           Present Conversion to recycled water         1.2.1         0.0           Present Conversion to recycled water         1.0.2         1.44           Subtotal         3.89 ERU           Water could be 20 to 24 AF consideration         5.4         1.0.3           Yidage A         1.67 resideration         1.0.2         1.44           Subtotal         3.89 ERU         Subtotal         3.89 ERU           Watage C         1.00 resideration         1.0.3         1.44           Subges C         1.00 resideration         1.0.3           Watage C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Infil                                                    | 0.05 MGD allocation assumed                                                                                               | 0                               | 56.0                              | Murieta Gardens                                                                                                 |                         |
| District Office         Conversion to regold water         E.4         0.0           Mixies Adversary (Seefing Last and Weet)         8 receivand units         15.1         11.9           Mixies Adversary (Seefing Last and Weet)         8 receivand units         16.1         11.9           Mixies Adversary (Seefing Last and Weet)         6 receivand units         16.2         0.0           Encodersary Seefing         Conversions to recolded water         16.2         0.0           Commercial Loop (to be developed)         Presented Conversions to recolded water         16.2         0.0           Seef Table (Searve park)         Conversions to recolded water         16.2         0.0           Commercial Loop (to be developed)         Weets of the formation to recolded water         16.2         0.0           Wings A         160 recolonent to a recolded water         16.2         16.0         Retreats         8.4         ERUs           Yings A         160 reveloped water         16.2         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Main Northgate                                           | Conversion to recycled water                                                                                              | 2.8                             | 0.0                               | interieta Garaciis                                                                                              |                         |
| Commercial and Weight         Presentation         11-1         19-8           Commercial and Weight         124 presentation         13-3         71-8           Commercial And Weight         124 presentation         13-3         71-8           Commercial And Weight         Conversions to recepted water         13-3         71-8           Commercial Charge gash         Conversions to recepted water         13-3         71-8           Commercial Charge gash         Conversions to recepted water         13-3         71-8           Commercial Charge gash         Conversions to recepted water         13-3         71-8           Present Sher Y Presented Conversions to recepted         Present Sher Y Presented Conversions to recepted water         13-3           Present Sher Y Presented Conversions to recepted         Subtract Sher Y Presented Conversions to recepted water         13-3           Yillage A         147 residential water         10-2         148         Subtract Sher Y Presented Water Y Presented Wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | District Office*                                         | Conversion to recycled water                                                                                              | 5.4                             | 0.0                               | Residential                                                                                                     | 78 ERUs                 |
| Nuesta dondras         expendient van 237 enderstal units         10.5         71.6         Commercial         22.7 ERU           Rendensus Park (4 care park)         Conventis to recycled water         12.1         0.0         Retreads         84         ERU!           Commercial Darp (fe be developed)         Present (conventis to recycled water         12.1         0.0         Retreads         84         ERU!           Commercial Loop (fe be developed)         Present (convention to recycled water         12.1         0.0         Retreads         84         ERU!           Water could be 20 to 30 AV (encode)         Present (convention to recycled water         10.3         144         Subtotal         389 ERU           Water could be 20 to 30 AV (encode)         Febra 400° / Feb3**         530         Retreads         84         ERU           Water could avait to 0 to 70 could water         107 encodental water         0         101         101         102         238         ERU           Water Could avait to 0         107 encodental water         0         102         101         (0.05 Mc           Water Could Avait Water W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Retreats (North: East and West)                          | 84 residential units                                                                                                      | 15.1                            | 19.8                              | a                                                                                                               |                         |
| Strankbark Polit (Larve park)         Conversion to recepted water         16.3         0.0           Commercial Large (for the developed)         Present of the Conversion to recepted water         12.1         0.0           Commercial Large (for the developed)         Present of the Conversion to recepted water         12.1         0.0           Present of the developed)         Present of the Conversion to recepted water         12.1         0.0           Present of the developed)         Present of the developed (targe park)         Execution to recepted water         12.1           Village A         Sub Tetal         6597         530         544           Present of the developed (targe park)         Execution to the developed (targe park)         272 ERU           Village A         167 reconstruction to the developed (targe park)         100         100           Village A         167 reconstruction to the developed (targe park)         238 ERU         Infill (PDR assumption)         238 ERU           Village A         112 reconstruction to the developed (targe park)         0         101         100         100           Village A         112 reconstruction to the developed (targe park)         0         100         100         100           Village B         112 reconstruction to the developed (targe park)         0         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Murieta Gardens                                          | equivalent to 227 residential units                                                                                       | 30.5                            | 71.9                              | Commercial                                                                                                      | 227 ERUs                |
| Disease Park (I - same park)         Conversion to recorded           Commercial Loop (the & developed)         Parential conversions in recorded           Present         Second 2 - S                                                                       | Stonehouse Park (4-acre park)                            | Conversion to recycled water                                                                                              | 36.2                            | 0.0                               |                                                                                                                 | 04 FDU                  |
| Present construction         Present construction         Subtotal         389 ERU           Image: Construction of the developer()         Image: Construction of the de                                                                                                                                                                                                                                                                                                                                                      | Escuela Park (4-acre park)                               | Conversion to recycled water                                                                                              | 12.1                            | 0.0                               | Retreats                                                                                                        | 84 ERUS                 |
| Phase 1 bb Tread         102         148         2010 Tread         500 Tread         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Commercial Loop (to be developed)                        | Potential conversion to recycled<br>water: could be 20 to 30 AFY demand;<br>require coordination with Owner to<br>proceed |                                 |                                   | Subtotal                                                                                                        | <i>389</i> ERUs         |
| Sub Foral         690 * / 1605***         530         Remaining         272 ERU           Wilge A         167 reademaid units         646         793         Infill (PDR assumption)         238 ERU           Wilge A         120 reademaid units         646         793         Infill (PDR assumption)         238 ERU           Wilge C         120 reademaid units         646         793         Infill (PDR assumption)         238 ERU           Wilge C         41 reademaid units         0         79         Infill (PDR assumption)         238 ERU           Wilge C         41 reademaid units         0         126         Infill (PDR assumption)         238 ERU           Wilge C         121 reademaid units         0         126         Infill (PDR assumption)         238 ERU           Wilge C         121 reademaid units         0         126         Infill (PDR assumption)         208 ERU           Wilge F         121 reademaid units         0         126         Infill (PDR assumption)         208 ERU           Wilge F         121 reademaid units         0         126         Infill (PDR assumption)         108           Wilge F         121 reademaid units         0         126         Infill (PDR assumption)         108           Wilge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          | Phase 1 Sub Total                                                                                                         | 102                             | 148                               |                                                                                                                 |                         |
| Phase 2 Propused Expanded Recycled Water Use Area (-2026-2028)         2772 ERO           Wilage 0         167 residential units         56.5         19.3           Wilage 1         167 residential units         64.6         19.3           Wilage 2         110 residential units         0         19.4           Wilage 5         41 residential units         0         10.4           Wilage 6         53 residential units         0         12.4           Wilage 7         61 residential units         0         12.4           Wilage 6         53 residential units         0         12.6           Wilage 7         61 residential units         0         12.6           Wilage 6         53 residential units         0         12.6           Wilage 7         61 residential units         0         12.6           Wilage 7         61 residential units         0         12.6           Wilage 7         70 residential units         0         12.4           Apertment         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          | Sub Total                                                                                                                 | 650*/865**                      | \$30                              | Pompining                                                                                                       | 272 EDUIC               |
| Village A         147 residential units         56.4         19.3           Village B         167 residential units         64.6         19.3           Village C         130 residential units         64.6         19.3           Village C         147 residential units         64.6         19.3           Village C         147 residential units         0         9.9           Village C         147 residential units         0         10.1           Village C         157 residential units         0         12.1           Village G         5.7 residential units         0         12.6           Village G         5.7 residential units         0         12.6           Village G         5.7 residential units         0         12.6           Riverview         140 residential units         0         12.6           Apertments         110 residential units         0         12.4           Apertments         110 residential units         0.7         12.4           Apertments         110 residential units         0.7         12.4           Apertments         110 residential units         0.7         12.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Phase 2 Proposed Expanded Recycled                       | Water Use Areas (~2020-2025)                                                                                              |                                 |                                   | Remaining                                                                                                       | 272 ERUS                |
| Village 3         147 residential units         644.6         79.3           Village 5         110 residential units         644.6         79.3           Village 7         41 residential units         0         0.4           Village 7         41 residential units         0         10.4           Village 7         41 residential units         0         12.4           Village 7         41 residential units         0         12.4           Village 7         41 residential units         0         12.4           Village 7         42 residential units         0         12.6           Village 7         12 residential units         0         12.6           Village 7         12 residential units         0         12.6           Village 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Village A                                                | 167 residential units                                                                                                     | 56.5                            | 39.3                              | Infill (DDP accumption)                                                                                         | 220 EDI Ic              |
| Willing C         110 presidential units         49%.a         10.8           Willing D         42 residential units         0         9.9           Willing E         42 residential units         0         10.1           Willing E         43 residential units         0         10.1           Willing G         55 residential units         0         12.5           Willing H         122 residential units         0         12.5           Riverview         140 residential units         0         22.4           Apertments         127 residential units         0         22.4           Apertments         127 residential units         0         23.6           Review         140 residential units         0         23.4           Apertments         127 residential units         0         23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Village B                                                | 167 residential units                                                                                                     | 64.6                            | 39.3                              |                                                                                                                 | 230 ENUS                |
| Vilage 0 44 Friedesta lands 0 594<br>Vilage 1 44 Friedesta lands 0 104<br>Vilage 7 49 Friedesta lands 0 104<br>Vilage 7 49 Friedesta lands 0 124<br>Vilage 7 49 Friedesta lands 0 124<br>Automa 7 Friedesta lands 0 124<br>Automa 7 Friedesta lands 1 224<br>Automa 1 10 Friedesta lands 1 238 224<br>Automa 1 10 Friedesta lands 1 24 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Village C                                                | 130 residential units                                                                                                     | 49.6                            | 30.6                              |                                                                                                                 | /0.05 MCD               |
| Utage 7         O Forderation lamits         O         10.1           Village 6         51 predefault lamits         0         12.5           Village 7         140 predefault lamits         0         12.6           Jahrierson         140 predefault lamits         0         12.7           Jahrierson 10         12.7 residential lamits         0         12.4           Spartments         137 predefault lamits         0         23.6           Village 7         140 predefault lamits         0         12.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Village D                                                | 42 residential units                                                                                                      | 0                               | 2.2                               |                                                                                                                 | (0.05 WIGD)             |
| Village 0         53 predicatul unit:         0         125           Village 1         123 predicatul unit:         0         126           Direvriew         142 predicatul unit:         0         229           Direvriew         149 predicatul unit:         0         229           Apertment         19 predicatul unit:         0         224           Apertment         17 predicatul unit:         0         234           Apertment         17 predicatul unit:         0         244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Village F                                                | 95 residential units                                                                                                      | 0                               | 22.3                              |                                                                                                                 |                         |
| Willage H         122 residential units         0         2.8.7           Direversam         1440 residential units         0         32.9           Lavierur         99 residential units         0         21.4           Apermeents         1270 residential units         23.3         23.3           Condenses of Monies Mills         198 residential units         27.8         45.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Village G                                                | 53 residential units                                                                                                      | 0                               | 12.5                              |                                                                                                                 |                         |
| Riverview         140 presidential units         0         32.9           Adverview         99 residential units         0         22.4           Apertments         127 presidential units         0         2.4           Apertments         127 presidential units         0         2.4           Apertments         127 presidential units         2.8         2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Village H                                                | 122 residential units                                                                                                     | 0                               | 28.7                              | The second se |                         |
| Lahriere 99 residential units 0 21.4<br>Apartments 170 residential units 23.4 23.1<br>Residences of Monica Mills. 198 residential units 72.8 45.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Riverview                                                | 140 residential units                                                                                                     | 0                               | 32.9                              |                                                                                                                 | and the second second   |
| Apartments 170 residential units 23.8 23.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lakeview                                                 | 99 residential units                                                                                                      | 0                               | 21.4                              |                                                                                                                 |                         |
| Residences of Murieta Hills 198 residential units 73.8 46.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Apartments                                               | 170 residential units                                                                                                     | 23.8                            | 23.3                              |                                                                                                                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Residences of Murieta Hills                              | 198 residential units                                                                                                     | 73,8                            | 46.6                              |                                                                                                                 |                         |
| industrial/Commercial/Residential 160 equivalent residential units 50.9 37.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Industrial/Commercial/Residential                        | 160 equivalent residential units                                                                                          | \$0.9                           | 37.6                              |                                                                                                                 |                         |
| Van Vieck Ranch Sprayfield 4 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Van Vieck Ranch                                          | Sprayfield 4                                                                                                              | 410                             | -                                 | A A A A A A A A A A A A A A A A A A A                                                                           |                         |
| Phase 2 Sub Total 320* / 730** 355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          | Phase 2 Sub Total                                                                                                         | 320* / 730**                    | 355                               | THE REAL AND A MENT                                                                                             | NUMBER OF STR           |
| Grand Total 970"/1.595" 805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          | Grand Total                                                                                                               | 970" / 1.595**                  | 885                               |                                                                                                                 | STREET LICES HE HARRING |









| le 10. Recommended Phase 1 Recycled Water Impre | ovements Features and Components    | Presses / Flamout                        | Culturela / Fasterna                 |
|-------------------------------------------------|-------------------------------------|------------------------------------------|--------------------------------------|
| ocess / Element                                 | Criteria / Feature                  | Process / Liement                        | PVC or HDPE pine                     |
| Recycled Water SCADA Control System             |                                     | Abaua Crada Dinalina Matariala           | Steel or Ductile Iron nine           |
| Number of SCADA Terminals                       | 1                                   | Pipeline Labeling                        | "Recorded Water, Do Not Drink"       |
| Location                                        | WWRP                                | Pipe Color or Wrapping                   | Purple or wrapped with purple tape   |
| Type                                            |                                     | Air and Blowoff Valves                   | District Standards                   |
| Lookout Hill                                    | Programmable Logic Controller (PLC) | Others                                   | See District Standards               |
| Control Valves                                  | Remote Terminal Units               | 6. Lookout Hill Booster Pumping Station  |                                      |
| Communication                                   | Radio*                              | Pump Type                                | Vertical Turbine                     |
| Control                                         | Pressure                            | Number of Pumps                          | One (1) duty: one (1) stand by       |
| Equalization Basin Potable Water Air Gap Conn   | ection                              | Total Dynamic Head                       | 150 feet TDH                         |
| Flow Rate (maximum)                             | 900 gpm                             | Pump Flow                                | 1.000 gpm (maximum)                  |
| Diameter                                        | 8-Inch                              | Motor Horsepower                         | 50 HP                                |
| Material                                        | Ductile Iron                        | Pump Housing                             | Not required                         |
| Air Gap (90º Bend)                              | 16 inches per RW-17                 | Backup Power                             | 50 KW Standby Diesel Generator       |
| Rehabilitate Existing Recycled Water Pumping    | Station                             | Control Method                           | Pressure                             |
| Pump Type                                       | Vertical Turbine                    | 7. Escuela Park Conversion - Recycled W  | ater Irrigation System Connection    |
| Number of Pumps                                 | Two (2) duty: one (1) stand by      | Site Supervisor                          | Rancho Murieta Association (RMA) (TB |
| Total Dynamic Head                              | 325 feet                            | Type of Landscape                        | Plantings and flowers now            |
| Pump Flow                                       | 1.500 gpm                           | Type of Irrigation                       | Spray and drip                       |
| Motor Horsepower                                | 200 HP                              | Area (approximate)                       | 4 acres                              |
| Backup Power                                    | 200 KW Standby Diesel Generator     | Water Demand (estimated)                 | 12.1 AFY                             |
| Control Method                                  | Pressure                            | Pipe Diameter                            | 4-inch                               |
| District Headquarters Conversion – Recycled W   | ater Irrigation System Connection   | Pipe Material                            | PVC                                  |
| Site Supervisor                                 | District (Paul Slebensohn)          | 8. Stonenouse Fark Conversion - Recycle  | d water irrigation System Connection |
| Type of Landscape                               | Grass in front yard and medians     | Site Supervisor                          | KMA (180)                            |
| Type of Irrigation                              | Spray and drip                      | Type of Landscape                        | Grass primaruy (neids)               |
| Area (approximate)                              | 168 acres                           | Area (approximate)                       | A smar                               |
| Water Demand (estimated)                        | 5.4 AFY                             | Water Demand (artimated)                 | 76.2 AEV                             |
| Pipe Diameter                                   | 4-Inch                              | Pine Dismater                            | 4 inch                               |
| Pipe Material                                   | PVC                                 | Pine Material                            | PVC                                  |
| Northwest Recycled Water Transmission Main      |                                     | 9. Lookout Hill Recycled Water Storage T | ank                                  |
| Pipeline Length (total)                         | 11.600 lineal feet, total           | Number of Tanka                          | 1                                    |
| Highway 16 Undercrossing                        | 1.000 lineal feet (approximately)   | Diameter                                 | 40                                   |
| Legacy Lane to Lookout Hill Tank                | 2.800 lineal feet (approximately)   | Height (maximum at sidewall)             | 26                                   |
| Lookout Hill Tank to 12-inch Force Main         | 2,400 lineal feet (approximately)   | Volume (nominal)                         | 200.000 gallons                      |
| 12-inch Force Main along Stonehouse Road to     | 5,400 lineal feet (approximately)   | Materials of Constructed                 | Bolted Steel                         |
| Stonehouse and Escuela Parks                    |                                     | 10. North Maingate Conversion - Recycle  | d Water Irrigation System Connection |
| Replace                                         | 1.200 lineal feet of 12-inch        | Site Supervisor                          | RMA (TBD)                            |
| CIPP Rehabilitation                             | 2,400 lineal feet of 12-inch        | Type of Landscape                        | Grass, flower beds, plantings        |
| Diameter                                        | 12 inch                             | Type of Irrigation                       | Spray and drip                       |
|                                                 |                                     | Area (approximate)                       | 121 acres                            |
|                                                 |                                     | Water Demand (estimated)                 | 2.8 AFY                              |
|                                                 |                                     | Pipe Diameter                            | 4-inch                               |
|                                                 |                                     | Pipe Material                            | PVC                                  |





| 10010 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Recommended Buildout Recycled Water Impi                                               | rovements Features and Components          | Contraction of the Association o |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Process /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Element                                                                                | Criteria / Feature                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A. Disinfe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rtion Facilities Upgrade                                                               |                                            | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Existi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng Contact Basin Modal Contact Time                                                    | 27 minutes at 3.0 MGD                      | and the second of the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Requi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | red Modal Contact Time                                                                 | 90 minutes (minimum)                       | and the second state of th |
| Addit<br>New (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ional Modal Contact Time Required<br>Contact Basin Efficiency<br>med Buffling Factors) | 90%                                        | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Regul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | med Barning Pactor                                                                     | 145 825 col minimum: 146 610 col octual    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lange Lange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | h to Width to Danth Pation                                                             | Target 40:1:15: Actual 40:1:14             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lengt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | h (without walls)                                                                      | 280 @ total (3 marray and at 03 33 @ long) | - AND REAL PROPERTY OF A DESCRIPTION OF  |
| Wide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (without walls)                                                                        | 21 ft total (3 passes, each at 7 ft wide)  | - Indiana and a second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Deuth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (without walls)                                                                        | 10 e                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| B. North C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | off Course Conveyance System Rehabilit:                                                | tion                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| b. Aorth o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P to Barr I ska                                                                        | 11 200 lines feet (12, and 8-inch)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | discement                                                                              | 4 300 lineal feet 12-inch                  | and the second of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P Rehabilitation                                                                       | 3800 lineal feet. Sinch                    | The state of the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | acement                                                                                | 1.900.8-inch                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C. Bass La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ke Recycled Water Storage Tank                                                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Numb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | er of Tanks                                                                            | 1                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Diam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rter                                                                                   | 70                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Heigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t (maximum at sidewall)                                                                | 22                                         | and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Volum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ne (nominal)                                                                           | 500.000 gallons                            | Section of the sectio |
| Mater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ials of Constructed                                                                    | Bolted Steel                               | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| D. Bass La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ke Booster Pumping Station                                                             |                                            | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Type                                                                                   | Vertical Turbine                           | CONTRACTOR OF A DATE OF A  |
| Numb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | er of Pumps                                                                            | One (1) duty: one (1) stand by             | - AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dynamic Head                                                                           | 120 feet                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Flow                                                                                   | 1.200 gpm                                  | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Horsepower                                                                             | 50 HP                                      | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Housing                                                                                | Not required                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Back                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ip Power                                                                               | 50 KW Standby Diesel Generator             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Contr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ol Method                                                                              | Pressure                                   | A CONTRACTOR OF A CONTRACTOR O |
| E. Season:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d Storage Reservoir                                                                    |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Existi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng Storage Capacity                                                                    | 728.2 AF                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Requi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | red Storage Capacity (Buildout)                                                        | 765 AF                                     | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| increased increa | mental Capacity Upgrade                                                                | 40 AF                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F. Van Vle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ck Sprayfield No. 4                                                                    |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Exten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sion of Recycled Water Transmission Main                                               | 1.000 lineal feet of 12-inch Certa-Loc™    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Spray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | field 4 Transmission Main                                                              | 5.000 lineal feet of 8-inch Certa-Loc™     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Spray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | field 4 Transmission Main                                                              | 5.000 lineal feet of 6-inch Certa-Loc™     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Spray Spray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | field 4 Transmission & Distribution Mains                                              | 16.250 lineal feet of 4-inch Certa-Loc™    | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Irriga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tion System                                                                            | 55 K-line Strings                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of Cover                                                                               | None, all located aboveground              | ALL COLLECTION AND COMPANY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| G. Dissolv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ed Air Flotation Feed Pump Improvemen                                                  | ts                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



|                  | Estimated of Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | obable Cons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | struction Costs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                  | And the second se | Statement of the local division in which the local division is not the local division of the local division in which the local division is not the local division of the local d | CONTRACTOR OF THE OWNER WATER OF THE OWNER WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |
| Tah              | le 15 Recommended Recycled Water Improvements and Estime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ated Costs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| No.              | Improvement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Estimated Cost (\$)a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Phase 1 (ŞM):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |
|                  | Phase 1 Recycled Water Improveme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Constantions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00              |
| 1                | Recycled Water SCADA Control System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 250,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Construction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.06              |
| 2                | Equalization Basin Potable Water Air Gap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 76,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ducient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F 20              |
| 3                | Recycled Water Pumping Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,045,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.38              |
| 4                | District Headquarters Conversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 5                | Northwest Recycled Water Transmission Main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,441,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and successive statements where the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| 6                | Lookout Hill Booster Pumping Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 612,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $D_{1}(d_{1}) + (c \wedge A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |
| 7                | Escuela Park Conversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bulldout (Şivi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 8                | Stonehouse Park Conversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C 02              |
| 9                | Lookout Hill Recycled Water Storage Tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 545,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Construction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.03              |
| 10               | Main NorthgateConversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Duciech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.00              |
| 11               | Commercial Loop Conversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.99              |
|                  | Phase 1 Subtotal (Estimated Construction Cost)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,060,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 12               | Soft Costs - 32.5% (Admin., Reg., Eng., Construct Man.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,319,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                  | Phase 1 Total (Project Cost)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5,380,000 <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Combined (CM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1. 12 10          |
|                  | Buildout Recycled Water Improvem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Complined (\$1vi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ). 13.40          |
| 13               | SCADA Upgrades                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 82,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 14               | Disinfection Facilities Upgrade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 665,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M. Allower Million and Million Million and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and the second of |
| 15               | North Golf Course Conveyance System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,620,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Futuro EDI los                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 212             |
| 16               | Bass Lake Tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,216,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Future EROS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,213             |
| 17               | Bass Lake Booster Pumping Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 625,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 18               | Seasonal Storage Reservoir Expansion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 839,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 19               | Van Vleck Sprayfield 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 890,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ect. Cost nor EDU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C OFF             |
| 20               | DAF Pumping Replacement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ESI. COSI per ERU:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ş0,055            |
|                  | Buildout Subtotal (Estimated Construction Cost)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6,030,000c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 21               | Soft Costs – 32.5% (Admin., Reg., Eng., Construct Man.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,960,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the state of the s |                   |
|                  | Buildout Total (Project Cost)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,990,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                  | Phase 1 and Buildout Recycled Water Impr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rovements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                  | Grand Total (Phase 1 and Buildout)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13,400,000d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                  | Estimated Number of New Equivalent Residential Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| . Deriv          | Estimated Lost per Connection (\$/ERU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$0,055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| - Estin          | iated costs based upon Engineering News Record (ENR) 20 City Average Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nstruction cost index (CCI) at 10,385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| b Com            | pared to \$10,014,000 (\$9,100,000 adjusted for inflation) as described previo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ously in the District's Title XVI Recycled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| Wate             | r Feasibility Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Server and the server and the server and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| < Comp<br>4 Comp | pared to \$15,055,000 as described previously in the District's Title XVI Recy-<br>pared to \$25,070,000 as described previously in the District's Title XVI Recy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cied water Feasibility Study<br>cled Water Feasibility Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| com              | and to apply a provide an accurate providency in the protect of the Aver Nety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and mater reasonary study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |





| Table A5. Rec      | ycled Water Production and I | Demand Es   | timate Deta | ils                        |                                           |       |     |
|--------------------|------------------------------|-------------|-------------|----------------------------|-------------------------------------------|-------|-----|
|                    |                              |             |             |                            | <b>•</b> •••••••                          |       |     |
|                    |                              | Com         | actions     | Recycled Water Productio   | on Estimates                              |       |     |
| Condition and De   | scription                    | Residential | Commercial  | (and/day residential unit) | - Source -                                |       |     |
| Evisting (Current) |                              | 2 604       | commerciar  | (gpu/uay residential unit) |                                           | 0.34  | 291 |
| Phase 1 (Euture)   | Infill                       | 2,004       |             | 165                        | District Standard                         | 0.34  | 301 |
| riase i (ruture)   | Stonehouse Park Conversion   | 238         |             | 105                        |                                           | 0.04  |     |
|                    | Escuela Park Conversion      | 0           |             | -                          | -                                         |       |     |
|                    | Main Northgata Conversion    | 0           |             | Evicting                   | Not applicable                            |       |     |
|                    | Wall Northgate Conversion    | 0           |             | LXISTING                   | Not applicable                            |       |     |
|                    | District Office Conversion   | 0           |             |                            |                                           |       |     |
|                    | Retreats North and East      | 62          |             | 165                        | District Standard/Draft Sewer Study       | 0.010 |     |
|                    | Retreats West                | 22          |             | 165                        | District Standard/Approved Sewer Study    | 0.004 |     |
|                    | Murieta Gardens              | 78          | 227         | 165                        | District Standard/Draft Sewer Study       | 0.05  |     |
|                    | Phase 1 Subtotal             | 627         |             |                            |                                           | 0.10  | 116 |
| Phase 2 (Future)   | Village A                    | 167         |             | 165                        |                                           | 0.03  |     |
|                    | Village B<br>Village C       | 167         |             | 165                        |                                           | 0.03  |     |
|                    |                              |             |             |                            |                                           |       |     |
|                    | Village D                    | 42          |             | 165                        |                                           | 0.01  |     |
|                    | Village E                    | 43          |             | 165                        | District Standard/Preliminary Draft Sewer | 0.01  |     |
|                    | Village F                    | 95          |             | 165                        | Study                                     | 0.02  |     |
|                    | Village G                    | 53          |             | 165                        |                                           | 0.01  |     |
|                    | Village H                    | 122         |             | 165                        | _                                         | 0.02  |     |
|                    | Riverview                    | 140         |             | 165                        |                                           | 0.02  |     |
|                    | Lakeview                     | 99          |             | 165                        |                                           | 0.02  |     |
|                    | Apartments                   | 170         |             | 120                        |                                           | 0.02  |     |

|       | Demand |
|-------|--------|
| (AFY) | (AFY)  |
| 381   | 550    |
| 44.0  |        |
|       | 36.2   |
|       | 12.1   |
|       | 20     |
|       | 2.0    |
|       | 5.4    |
|       |        |
| 11.5  | 11.9   |
| 4.1   | 3.2    |
| 56.4  | 30.5   |
| 116   | 102    |
|       |        |
|       |        |
|       |        |
| 30.9  | 61.4   |
|       |        |
|       |        |
|       |        |
| 30.9  |        |
|       | 64.6   |
|       |        |
| 24.0  |        |
| 24.0  |        |
|       | 49.6   |
| 7.8   | 0      |
| 7.9   | 0      |
| 17.6  | 0      |
| 9.8   | 0      |
| 22.6  | 0      |
|       |        |
| 25.9  | 0      |
|       |        |
|       |        |
|       |        |
| 18.3  | 0      |
|       |        |
| 23.3  | 23.8   |
|       | 20.0   |

|                         |                                       | Conn          | ections          | Unit Flow Factor               | Source                              |                        |                |               | Demand |
|-------------------------|---------------------------------------|---------------|------------------|--------------------------------|-------------------------------------|------------------------|----------------|---------------|--------|
| <b>Condition and De</b> | scription                             | Residential   | Commercial       | (gpd/day residential unit)     | Source                              | (MGD)                  |                | (AFY)         | (AFY)  |
|                         | Residences of Murieta Hills           | 198           |                  | 165                            |                                     | 0.03                   |                | 36.6          | 73.8   |
|                         | Industrial/Commercial/Residential     | 160           |                  | 165                            |                                     | 0.03                   |                | 29.6          | 50.9   |
|                         | Phase 2 Subtotal                      | 1,586         |                  | 165                            |                                     | 0.25                   | 285            | 285           | 324    |
| Combined Total (        | Existing, Phase 1 and 2)              | 5,044         |                  |                                |                                     | 0.70                   | 781            | 782           | 976    |
|                         |                                       |               |                  | · · · · ·                      |                                     |                        |                |               |        |
| a Droliminary Sou       | vor Study for Poncho Murioto North (N | March 21 2010 | 5) doccriboc tha | t those developments will conv | recycled water for irrigation purpo | sos in accordance with | the Dictrict's | Pocyclad Mate |        |

a. Preliminary Sewer Study for Rancho Murieta North (March 31, 2016) describes that these developments will serve recycled water for irrigation purposes in accordance with the District's Recycled Water Program. H

| Phase 1 Developments                |                |                                                                                                     |                 |                |                |                          |                |
|-------------------------------------|----------------|-----------------------------------------------------------------------------------------------------|-----------------|----------------|----------------|--------------------------|----------------|
| OLD METHODOLOGY                     |                | Residential Outdoor Irrigation                                                                      |                 |                |                |                          |                |
|                                     |                |                                                                                                     |                 | Development RW | Development WW |                          | Recycled Water |
| Development                         | Number of Lots | Estimating Methodology                                                                              | Demand          | Demand         | Production     | Occupancy Timeline       | Service Region |
| Riverview - RD 5 (could be RD 4)    | 149            | Historic adjusted for AB 1881 Compliance                                                            | 0.30 AFY        | 44.7 AFY       | 7.0 AFY        | 2016 - 2020 or 2016-2025 | Α              |
| Lakeview - RD 5 (Could be RD 4)     | 99             | Historic adjusted for AB 1881 Compliance                                                            | 0.30 AFY        | 29.7 AFY       |                | 2016 - 2020 or 2016-2025 | А              |
| Residences of MH East               | 99             | Historic adjusted for AB 1881 Compliance                                                            | 0.30 AFY        | 29.7 AFY       |                | 2016 - 2020 or 2016-2025 | D              |
| Residences of MH West               | 99             | Historic adjusted for AB 1881 Compliance                                                            | 0.30 AFY        | 29.7 AFY       |                | 2016 - 2020 or 2016-2025 | D              |
| Retreats                            | 84             | 400 gpd water allocation; 50% outdoor                                                               | 200.0 gpd/unit  | 18.8 AFY       |                | 2016 - 2020 or 2016-2025 | B or C         |
| Murieta Gardens I (Commercial)      | 1 acre park    | New MAWA allocation                                                                                 | 2.93 ft/yr      | 2.9 AFY        |                | 2016 - 2020 or 2016-2025 | D              |
| Murieta Gardens II (Residential)    | 95             | MAWA calculation; 8600 SF/lot; 1200 - 1500 SF homes;<br>1500 - 2000 sf hardscape; 500 sf LA average | 0.37 AFY        | 35.2 AFY       |                | 2016 - 2020 or 2016-2025 | В              |
|                                     |                | Total Estimated Dev                                                                                 | elopment Demand | 190.7 AFY      |                |                          |                |
|                                     |                |                                                                                                     |                 |                |                |                          |                |
| PROPOSED METHODOLOGY                |                | Residential Outdoor Irrigation                                                                      |                 |                |                |                          |                |
|                                     |                |                                                                                                     |                 | Development RW | Development WW |                          | Recycled Water |
| Development                         | Number of Lots | Estimating Methodology                                                                              | Demand          | Demand         | Production     | Occupancy Timeline       | Service Region |
| Riverview - RD 5 (could be RD 4)    | 149            | LU Designations Unit Demands, MAWA                                                                  | 0.16 AFY        | 23.8 AFY       | 32.2 AFY       | 2016 - 2020 or 2016-2025 | А              |
| Lakeview - RD 5 (Could be RD 4)     | 99             | LU Designations Unit Demands, MAWA                                                                  | 0.16 AFY        | 15.8 AFY       | 21.4 AFY       | 2016 - 2020 or 2016-2025 | А              |
| Residences of MH East - RD 3        | 95             | LU Designations Unit Demands, MAWA                                                                  | 0.37 AFY        | 35.2 AFY       | 20.6 AFY       | 2016 - 2020 or 2016-2025 | D              |
| Residences of MH East - RD 1        | 4              | LU Designations Unit Demands, MAWA                                                                  | 0.51 AFY        | 2.0 AFY        | 0.9 AFY        | 2016 - 2020 or 2016-2025 | D              |
| Residences of MH West - RD 3        | 99             | LU Designations Unit Demands, MAWA                                                                  | 0.37 AFY        | 36.6 AFY       | 21.4 AFY       | 2016 - 2020 or 2016-2025 | D              |
| Retreats                            | 84             | 400 gpd water allocation; 50% outdoor                                                               | 200 gpd/unit    | 18.8 AFY       | 18.2 AFY       | 2016 - 2020 or 2016-2025 | B or C         |
| Murieta Gardens I (Commercial)      | 1 acre park    | New MAWA allocation, 95% landscaped area                                                            | 2.93 ft/yr      | 2.8 AFY        | 0.0 AFY        | 2016 - 2020 or 2016-2025 | D              |
| Murieta Gardens II (Residential)    | 95             | LU Designations Unit Demands, MAWA                                                                  | 0.17 AFY        | 16.2 AFY       | 20.6 AFY       | 2016 - 2020 or 2016-2025 | В              |
|                                     |                | Total Estimated Deve                                                                                | elopment Demand | 151.3 AFY      | 135.3 AFY      |                          |                |
|                                     |                |                                                                                                     |                 |                |                |                          |                |
| Phase 2 Developments                |                |                                                                                                     |                 |                |                |                          |                |
|                                     |                | Residential Outdoor Irrigation                                                                      |                 |                |                |                          |                |
|                                     |                |                                                                                                     |                 | Development RW | Development WW |                          | Recycled Water |
| Development                         | Number of Lots | Estimating Methodology                                                                              | Demand          | Demand         | Production     | Occupancy Timeline       | Service Region |
| River Canyon - Estates              | 80             | LU Designations Unit Demands, MAWA                                                                  | 0.51 AFY        | 40.8 AFY       | 17.3 AFY       |                          |                |
| River Canyon - TH/Condo/Apts        | 40             | 250 gpd water allocation; 50% outdoor                                                               | 125 gpd/unit    | 5.6 AFY        | 8.7 AFY        |                          |                |
| Highlands - Estates                 | 59             | LU Designations Unit Demands, MAWA                                                                  | 0.51 AFY        | 30.1 AFY       | 12.8 AFY       |                          |                |
| Highlands - RD 3                    | 21             | LU Designations Unit Demands, MAWA                                                                  | 0.37 AFY        | 7.8 AFY        | 4.5 AFY        |                          |                |
| Highlands - TH/Condo/Apts           | 30             | 250 gpd water allocation; 50% outdoor                                                               | 125 gpd/unit    | 4.2 AFY        | 6.5 AFY        |                          |                |
| Terrace - Large Estate              | 14             | LU Designations Unit Demands, MAWA                                                                  | 0.51 AFY        | 7.1 AFY        | 3.0 AFY        | 60.0 AFY                 |                |
| Terrace - Estate                    | 22             | LU Designations Unit Demands, MAWA                                                                  | 0.51 AFY        | 11.2 AFY       | 4.8 AFY        | 177                      |                |
| Terrace - RD 3                      | 102            | LU Designations Unit Demands, MAWA                                                                  | 0.37 AFY        | 37.7 AFY       | 22.1 AFY       |                          |                |
| Terrace - RD 5 (small)              | 9              | LU Designations Unit Demands, MAWA                                                                  | 0.13 AFY        | 1.2 AFY        | 1.9 AFY        |                          |                |
| Terrace - Triplex                   | 30             | LU Designations Unit Demands, MAWA                                                                  | 0.09            | 2.7 AFY        | 6.5 AFY        |                          |                |
| Apartment 17                        | 170            | 250 gpd water allocation; 50% outdoor                                                               | 125 gpd/unit    | 23.8 AFY       | 36.8 AFY       |                          |                |
| Esquela - RD 3                      | 40             | LU Designations Unit Demands, MAWA                                                                  | 0.37 AFY        | 14.8 AFY       | 8.7 AFY        |                          |                |
| Esquela - Park                      | 4 acre park    | 95% landscaped area                                                                                 | 2.93 ft/yr      | 11.1 AFY       | 0.0 AFY        |                          |                |
| E of Lake Clementia - Estates       | 54             | LU Designations Unit Demands, MAWA                                                                  | 0.51 AFY        | 27.5 AFY       | 11.7 AFY       |                          |                |
| E of Lake Clementia - TH/Condo/Apts | 30             | 250 gpd water allocation; 50% outdoor                                                               | 125 gpd/unit    | 4.2 AFY        | 6.5 AFY        |                          |                |
| E of Lake Chesbro - Estate          | 10             | LU Designations Unit Demands, MAWA                                                                  | 0.51 AFY        | 5.1 AFY        | 2.2 AFY        |                          |                |
| E of Lake Chesbro - RD 3            | 58             | LU Designations Unit Demands, MAWA                                                                  | 0.37 AFY        | 21.5 AFY       | 12.6 AFY       |                          |                |

|                                   |                | Residential Outdoor Irrigation        |                   |                |                |                           |                |
|-----------------------------------|----------------|---------------------------------------|-------------------|----------------|----------------|---------------------------|----------------|
|                                   |                |                                       |                   | Development RW | Development WW |                           | Recycled Water |
| Development                       | Number of Lots | Estimating Methodology                | Demand            | Demand         | Production     | <b>Occupancy Timeline</b> | Service Region |
| E of Lake Chesbro - TH/Condo/Apts | 20             | 250 gpd water allocation; 50% outdoor | 125 gpd/unit      | 2.8 AFY        | 4.3 AFY        |                           |                |
| E of Lake Calero - Estate         | 38             | LU Designations Unit Demands, MAWA    | 0.51 AFY          | 19.4 AFY       | 8.2 AFY        |                           |                |
| E of Lake Calero - RD 3           | 81             | LU Designations Unit Demands, MAWA    | 0.37 AFY          | 30.0 AFY       | 17.5 AFY       |                           |                |
| E of Lake Calero - TH/Condo/Apts  | 20             | 250 gpd water allocation; 50% outdoor | 125 gpd/unit      | 2.8 AFY        | 4.3 AFY        |                           |                |
|                                   | 1,553          | Total Estimated D                     | evelopment Demand | 311.3 AFY      | 200.8 AFY      |                           |                |
|                                   |                | Overall                               | Estimated Demand  | 0.29 AFY/lot   |                |                           |                |

| Land Use Designation                 | Lot Area     | Roads/Right of Ways        | Lot Area           | Building Coverage | Hardscape Coverage | Landscape Coverage | Irrigation Demand <sup>a</sup> | Refere  |
|--------------------------------------|--------------|----------------------------|--------------------|-------------------|--------------------|--------------------|--------------------------------|---------|
|                                      | (sf)         | (%)                        | (sf)               | (sf)              | (sf)               | (sf)               | (AFY)                          |         |
| Estate                               |              |                            |                    |                   |                    |                    |                                |         |
|                                      |              |                            |                    |                   |                    |                    |                                | Limit b |
| RD 1 / Estates                       | 43,560       |                            |                    |                   |                    |                    | 0.51                           | 195.2   |
|                                      |              |                            |                    |                   |                    |                    |                                | Folson  |
| RD 3 - Low                           | 14,520       | 25                         | 10,890             | 3,800             | 2,700              | 4,390              | 0.30                           | Hardso  |
|                                      |              |                            |                    |                   |                    |                    |                                | Hardso  |
| RD 3 - High                          | 14,520       | 25                         | 10,890             | 2,200             | 2,200              | 6,490              | 0.44                           | > 35%   |
| RD 5 - Low                           | 8,700        | 30                         | 6,090              | 2,400             | 1,800              | 1,890              | 0.13                           | Folson  |
| RD 5 - High                          | 8,700        | 30                         | 6,090              | 1,500             | 1,800              | 2,790              | 0.19                           | Folson  |
|                                      |              |                            |                    |                   |                    |                    |                                | Tentat  |
| Murieta Gardens II - Low             | 8,600        | 35                         | 5,590              | 1,500             | 2,000              | 2,090              | 0.14                           | (buildi |
|                                      |              |                            |                    |                   |                    |                    |                                | Tentat  |
| Murieta Gardens II - High            | 8,600        | 35                         | 5,590              | 1,200             | 1,400              | 2,990              | 0.20                           | (buildi |
|                                      |              |                            |                    |                   |                    |                    |                                | Folson  |
| Triplex                              |              |                            |                    |                   |                    |                    | 0.09                           | did no  |
| <sup>a.</sup> Obtained from MAWA, as | sume 100%    | turf irrigation            |                    |                   |                    |                    |                                |         |
| b. MAWA used in all cases e          | except as no | ted (Folsom used 85% of ET | , rather than 70%) |                   |                    |                    |                                |         |

based on 650 gpd/day allocation minus historic indoor use of gpd (502.2-307 gpd)

m Water Supply Assessment; 20% Building and 20%

cape Coverage; Sac County building coverage limited to 50% cape Coverage; Sac County building coverage limited to 50% for Folsom

m Water Supply Assessment SFHD (6,000 sf lots)

m Water Supply Assessment SFHD (6,000 sf lots) tive Subdivision Maps, Information from Mike Robertson ling coverage), and Opitz and Hauer, 1995

tive Subdivision Maps, Information from Mike Robertson ing coverage), and Opitz and Hauer, 1995

m Water Supply Assessment, assumed to be equal to MFLD, ot use MAWA

# Rancho Murieta Community Services District Water Balance - Buildout

| 100-YR Modifiers<br>100-yr Return Ratio                                  | 1.84 unitless                              | ,              | WWRP Influent Flov                    | vs & Site Info<br>. 314.00 r | ng/vr          | Pan Ev         | aporation Coefficient                                         | 0.75                     | unitless                   |                 | Reservoir Watershed Area                                                               | 40                  | acres              | Maximum Storage o                  | of Reservoirs (1&2)                     | 859.9 ac-ft                | RMCC Lake Water Surface Area                       | 11.2 acres                 |
|--------------------------------------------------------------------------|--------------------------------------------|----------------|---------------------------------------|------------------------------|----------------|----------------|---------------------------------------------------------------|--------------------------|----------------------------|-----------------|----------------------------------------------------------------------------------------|---------------------|--------------------|------------------------------------|-----------------------------------------|----------------------------|----------------------------------------------------|----------------------------|
| 100-yr modifier - Pan Evaporation<br>Normalized I&I<br>100-yr I/I Volume | 0.8 unitless<br>61.74 mg/MGD/yr<br>66.3 mg | Beginning \    | ADWF (June-Sep<br>Water Volume in Res | o) 0.79 r<br>s. 65 a         | ngd<br>Ic-ft   | Run-off C<br>W | WWRP Site Area<br>Coefficient for WWRP<br>WRP Pond Area Total | 7.5 a<br>0.9 a<br>10.7 a | acres<br>unitless<br>acres | Run-off         | Coefficient for Reservoirs<br>Proportion in Reservoir #1<br>Proportion in Reservoir #2 | 0.9<br>0.81<br>0.19 | unitless<br>%<br>% | ige Volume of Reservoi<br>Water Ba | irs w/ 2ft FB (1&2)<br>lance Max Volume | 728.2 ac-ft<br>882.1 ac-ft | RMCC Contributing Watershed<br>Run-off Coefficient | 15.0 acres<br>0.2 unitless |
| Average-yr I/I Volume                                                    | 7.0 mg                                     | October        | November                              | December                     | lanuary        | February       | 100-yr Level of A<br>March                                    | Annual Precipitatio      | on<br>May                  | lune            | luly                                                                                   | Διισιιst            | Sentember          | Total                              |                                         |                            |                                                    |                            |
| Climate Inputs                                                           | Units                                      | October        | Hovember                              | becember                     | Junuary        | rebradity      | indicit.                                                      | 7.pm                     | indy                       | June            | 5017                                                                                   | August              | September          | Total                              |                                         |                            |                                                    |                            |
| Precipitation (Average)                                                  | in                                         | 1.32           | 3.47                                  | 3.39                         | 4.46           | 4.34           | 4.30                                                          | 1.84                     | 0.52                       | 0.31            | 0.11                                                                                   | 0.10                | 0.45               | 24.61                              |                                         |                            |                                                    |                            |
| Precipitation (100-YR)<br>Pan Evaporation                                | in<br>in                                   | 2.43           | 2.06                                  | 6.24<br>1.25                 | 8.21           | 7.99           | 7.91                                                          | 3.39<br>5.21             | 0.96                       | 9.91            | 0.20                                                                                   | 9.93                | 0.83               | 45.28                              |                                         |                            |                                                    |                            |
| Effective Lake Evaporation                                               | in                                         | 3.67           | 1.55                                  | 0.94                         | 0.69           | 1.43           | 2.60                                                          | 3.91                     | 6.05                       | 7.43            | 8.34                                                                                   | 7.45                | 5.59               | 49.64                              |                                         |                            |                                                    |                            |
| Lake Evap - 100- yr Effective                                            | in                                         | 3.67           | 1.55                                  | 0.75                         | 0.55           | 1.14           | 2.08                                                          | 3.13                     | 6.05                       | 7.43            | 8.34                                                                                   | 7.45                | 5.59               | 47.72                              |                                         |                            |                                                    |                            |
| Percolation                                                              | in                                         | 0.00           | 0.00                                  | 0.00                         | 0.00           | 0.00           | 0.00                                                          | 0.00                     | 0.00                       | 0.00            | 0.00                                                                                   | 0.00                | 0.00               | 0.00                               |                                         |                            |                                                    |                            |
| RMCSD WWRP                                                               |                                            | 0.07           | 201                                   | 100/                         |                | 00/            | 100/                                                          |                          | 201                        | 0.07            | 24/                                                                                    |                     | 70/                | 100%                               |                                         |                            |                                                    |                            |
| # Days in Month                                                          | %<br>days                                  | 8%<br>31       | 8%<br>30                              | 31                           | 9%<br>31       | 28             | 31                                                            | 9%<br>30                 | 8%<br>31                   | 8%<br>30        | 8%<br>31                                                                               | 8%<br>31            | 7%<br>30           | 365                                |                                         |                            |                                                    |                            |
| Wastewater Influent                                                      | MG                                         | 25.0           | 24.6                                  | 20.2                         | 27.9           | 24.5           | 21.1                                                          | 27.9                     | 26.2                       | 24.2            | 24.6                                                                                   | 24.5                | 22.4               | 214.00                             |                                         |                            |                                                    |                            |
| Wastewater Influent                                                      | ac-ft                                      | 76.6           | 75.5                                  | 92.8                         | 85.3           | 75.2           | 95.5                                                          | 85.4                     | 80.5                       | 74.3            | 75.5                                                                                   | 75.1                | 71.8               | 963.63                             | 1167.00                                 |                            |                                                    |                            |
| 100-YR I/I Estimate                                                      | ac-ft                                      | 16.2           | 15.9                                  | 19.6                         | 18.0           | 15.9           | 20.2                                                          | 18.0                     | 17.0                       | 15.7            | 15.9                                                                                   | 15.9                | 15.2               | 203.37                             |                                         |                            |                                                    |                            |
| Average-YR I/I Estimate<br>Site Run-off                                  | ac-tt<br>ac-ft                             | 19             | 5 1                                   | 5.0                          | 6.6            | 6.4            | 63                                                            | 27                       | 0.8                        | 0.5             | 0.2                                                                                    | 0.1                 | 0.7                | 36 34                              |                                         |                            |                                                    |                            |
| Pond Precipitation (direct)                                              | ac-ft                                      | 2.2            | 5.7                                   | 5.6                          | 7.3            | 7.1            | 7.1                                                           | 3.0                      | 0.9                        | 0.5             | 0.2                                                                                    | 0.2                 | 0.7                | 40.38                              |                                         |                            |                                                    |                            |
| Pond Evaporation                                                         | ac-ft                                      | -3.3           | -1.4                                  | -0.8                         | -0.6           | -1.3           | -2.3                                                          | -3.5                     | -5.4                       | -6.6            | -7.4                                                                                   | -6.6                | -5.0               | -44.26                             |                                         |                            |                                                    |                            |
| RMCSD Secondary Storage Reservoirs                                       |                                            |                |                                       |                              |                |                |                                                               |                          |                            |                 |                                                                                        |                     |                    |                                    |                                         |                            |                                                    |                            |
| Reservoir # 1 Vol<br>Reservoir # 1 Denth                                 | ac-ft<br>ft                                | 52.7           | 92.1                                  | 191.9                        | 309.8          | 430.6          | 537.7<br>29 1                                                 | 658.6<br>32.6            | 714.5                      | 683.4           | 530.6                                                                                  | 303.5               | 136.5              | 4642.04                            |                                         |                            |                                                    |                            |
| Reservoir # 1 Surface Area                                               | acre                                       | 18.8           | 19.6                                  | 21.5                         | 23.5           | 25.3           | 26.6                                                          | 27.8                     | 28.2                       | 28.0            | 26.5                                                                                   | 23.4                | 20.5               | 289.85                             |                                         |                            |                                                    |                            |
| Reservoir #2 Vol                                                         | ac-ft                                      | 12.4           | 21.6                                  | 45.0                         | 72.7           | 101.0          | 126.1                                                         | 154.5                    | 167.6                      | 160.3           | 124.5                                                                                  | 71.2                | 32.0               | 1088.87                            |                                         |                            |                                                    |                            |
| Reservoir # 2 Surface Area                                               | acre                                       | 3.4            | 3.8                                   | 4.6                          | 5.4            | 6.2            | 6.7                                                           | 7.2                      | 7.4                        | 7.3             | 6.7                                                                                    | 5.4                 | 4.1                | 68.00                              |                                         |                            |                                                    |                            |
| Total Water Surface Area                                                 | acre                                       | 22.2           | 23.4                                  | 26.1                         | 29.0           | 31.4           | 33.3                                                          | 35.0                     | 35.6                       | 35.3            | 33.2                                                                                   | 28.8                | 24.6               | 357.85                             |                                         |                            |                                                    |                            |
| Contributing Water Shed Area<br>Reservoir Run-off                        | acre<br>ac-ft                              | 17.8           | 16.6<br>8.0                           | 13.9                         | 11.0           | 8.6<br>5.1     | 6.7                                                           | 5.0                      | 4.4                        | 4.7             | 6.8<br>0.1                                                                             | 11.2                | 15.4               | 122.15                             |                                         |                            |                                                    |                            |
| Reservoir Precip (direct)                                                | ac-ft                                      | 4.5            | 12.4                                  | 13.6                         | 19.8           | 20.9           | 22.0                                                          | 9.9                      | 2.8                        | 1.7             | 0.6                                                                                    | 0.4                 | 1.7                | 110.27                             |                                         |                            |                                                    |                            |
| Reservoir Evaporation                                                    | ac-ft                                      | -6.8           | -3.0                                  | -2.0                         | -1.7           | -3.7           | -7.2                                                          | -11.4                    | -18.0                      | -21.8           | -23.1                                                                                  | -17.9               | -11.5              | -128.05                            |                                         |                            |                                                    |                            |
| RMCC Irrigation Lakes                                                    |                                            |                |                                       |                              |                |                |                                                               |                          |                            |                 |                                                                                        |                     |                    |                                    |                                         |                            |                                                    |                            |
| Lake Water Shed Run-off<br>Lake Precipitation (direct)                   | ac-ft<br>ac-ft                             | 0.2            | 0.4                                   | 0.4                          | 0.5            | 0.5            | 0.5                                                           | 0.2                      | 0.1                        | 0.0             | 0.0                                                                                    | 0.0                 | 0.1                | 2.81                               |                                         |                            |                                                    |                            |
| Irrig. Lake Evaporation                                                  | ac-ft                                      | -3.4           | -1.4                                  | -0.9                         | -0.6           | -1.3           | -2.4                                                          | -3.7                     | -5.7                       | -7.0            | -7.8                                                                                   | -7.0                | -5.2               | -46.49                             |                                         |                            |                                                    |                            |
| Supplemental Water                                                       |                                            |                |                                       |                              |                |                |                                                               |                          |                            |                 |                                                                                        |                     |                    |                                    |                                         |                            |                                                    |                            |
| Supplemental Water                                                       | ac-ft                                      | 0.0            | 0.0                                   | 0.0                          | 0.0            | 0.0            | 0.0                                                           | 0.0                      | 0.0                        | 0.0             | 0.0                                                                                    | 0.0                 | 0.0                | 0.00                               |                                         |                            |                                                    |                            |
| Disposal                                                                 |                                            | -44.9          | 211.8                                 | 218.8                        | 218.8          | 199.4          | -1.7                                                          | -36.2                    | -112.5                     | -246.6          | -334.7                                                                                 | -266.7              | -173.7             |                                    |                                         |                            |                                                    |                            |
| RMCC Golf Course Demand                                                  | ac-ft                                      | -20.3          | 0.0                                   | 0.0                          | 0.0            | 0.0            | -0.8                                                          | -16.4                    | -50.8                      | -111.4          | -151.3                                                                                 | -120.5              | -78.5              | -550.00                            |                                         |                            |                                                    |                            |
| Residential Irrigation<br>Van Vleck Banch Demand                         | ac-ft<br>ac-ft                             | -14.3<br>-10.3 | 0.0                                   | 0.0                          | 0.0            | 0.0            | -0.5<br>-0.4                                                  | -11.5<br>-8.3            | -35.8                      | -78.4           | -106.4                                                                                 | -84.8<br>-61.4      | -55.2              | -387.00                            |                                         |                            |                                                    |                            |
|                                                                          |                                            |                |                                       |                              |                |                |                                                               |                          |                            |                 |                                                                                        |                     |                    |                                    |                                         |                            |                                                    |                            |
| Effluent Storage<br>Beginning Water Volume in Res.                       | ac-ft                                      | 65             | 113.7                                 | 237.0                        | 382.5          | 531.6          | 663.9                                                         | 813.1                    | 882.1                      | 843.7           | 655.1                                                                                  | 374.7               | 168.5              | 5730.92                            |                                         |                            |                                                    |                            |
| Change in Water Volume                                                   | ac-ft                                      | 48.7           | 123.2                                 | 145.6                        | 149.1          | 132.2          | 149.2                                                         | 69.0                     | -38.3                      | -188.6          | -280.4                                                                                 | -206.2              | -103.5             | 0.01                               |                                         |                            |                                                    |                            |
| Final Water Volume in Reservoirs                                         | ас-п                                       | 113.7          | 237.0                                 | 382.5                        | 531.6          | 663.9          | 813.1                                                         | 882.1                    | 843.7                      | 655.1           | 374.7                                                                                  | 168.5               | 65                 | 5730.93                            |                                         |                            |                                                    |                            |
|                                                                          |                                            | October        | November                              | December                     | January        | February       | Average-yr Level o                                            | f Annual Precipita       | tion                       | lune            | luby                                                                                   | August              | Santambar          | Total                              |                                         |                            |                                                    |                            |
| Climate Inputs                                                           | Units                                      | October        | November                              | December                     | January        | rebluary       | Warch                                                         | April                    | ividy                      | Julie           | July                                                                                   | August              | September          | TOTAL                              |                                         |                            |                                                    |                            |
| Precipitation (Average)                                                  | in                                         | 1.32           | 3.47                                  | 3.39                         | 4.46           | 4.34           | 4.30                                                          | 1.84                     | 0.52                       | 0.31            | 0.11                                                                                   | 0.10                | 0.45               | 24.61                              |                                         |                            |                                                    |                            |
| Precipitation (100-YR)<br>Pan Evaporation                                | in                                         | 2.43           | 2.06                                  | 6.24<br>1.25                 | 8.21           | 1.99           | 3.47                                                          | 3.39<br>5.21             | 8.07                       | 9.91            | 0.20                                                                                   | 0.18<br>9.93        | 0.83               | 45.28                              |                                         |                            |                                                    |                            |
| Effective Lake Evaporation                                               | in                                         | 3.67           | 1.55                                  | 0.94                         | 0.69           | 1.43           | 2.60                                                          | 3.91                     | 6.05                       | 7.43            | 8.34                                                                                   | 7.45                | 5.59               | 49.64                              |                                         |                            |                                                    |                            |
| Lake Evap - 100- yr Effective<br>Percolation                             | in<br>in                                   | 3.67           | 1.55                                  | 0.75                         | 0.55           | 1.14           | 2.08                                                          | 3.13                     | 6.05                       | 7.43            | 8.34                                                                                   | 7.45                | 5.59               | 47.72                              |                                         |                            |                                                    |                            |
| ( creation                                                               |                                            | 0.00           | 0.00                                  | 0.00                         | 0.00           | 0.00           | 0.00                                                          | 0.00                     | 0.00                       | 0.00            | 0.00                                                                                   | 0.00                | 0.00               | 0.00                               |                                         |                            |                                                    |                            |
| RMCSD WWRP<br>WW Influent - Monthly-Daily Flow                           | %                                          | 8%             | 8%                                    | 10%                          | 9%             | 8%             | 10%                                                           | 9%                       | 8%                         | 8%              | 8%                                                                                     | 8%                  | 7%                 | 100%                               |                                         |                            |                                                    |                            |
| # Days in Month                                                          | days                                       | 31             | 30                                    | 31                           | 31             | 28             | 31                                                            | 30                       | 31                         | 30              | 31                                                                                     | 31                  | 30                 | 365                                |                                         |                            |                                                    |                            |
| Wastewater Influent                                                      | MG                                         | 25.0           | 24.6                                  | 30.3                         | 27.8           | 24.5           | 31.1                                                          | 27.8                     | 26.2                       | 24.2            | 24.6                                                                                   | 24.5                | 23.4               | 314.00                             |                                         |                            |                                                    |                            |
| Wastewater Influent                                                      | ac-ft                                      | 76.6           | 75.5                                  | 92.8                         | 85.3           | 75.2           | 95.5                                                          | 85.4                     | 80.5                       | 74.3            | 75.5                                                                                   | 75.1                | 71.8               | 963.63 Should I                    | be 885; 78.7 AFY too                    | high; reduce ave           | erage I/I to 21.4 AFY compensate                   |                            |
| 100-YR I/I Estimate<br>Average-YR I/I Estimate                           | ac-π<br>ac-ft                              | 1.7            | 1.7                                   | 2.1                          | 1.9            | 1.7            | 2.1                                                           | 1.9                      | 1.8                        | 1.6             | 1.7                                                                                    | 1.7                 | 1.6                | 21.36                              | 984.99                                  |                            |                                                    |                            |
| Site Run-off                                                             | ac-ft                                      | 1.1            | 2.8                                   | 2.7                          | 3.6            | 3.5            | 3.5                                                           | 1.5                      | 0.4                        | 0.2             | 0.1                                                                                    | 0.1                 | 0.4                | 19.75                              |                                         |                            |                                                    |                            |
| Pond Precipitation (direct)<br>Pond Evaporation                          | ac-ft<br>ac-ft                             | 1.2<br>-3.3    | 3.1<br>-1.4                           | 3.0<br>-0.8                  | 4.0<br>-0.6    | 3.9<br>-1.3    | 3.8<br>-2.3                                                   | 1.6<br>-3.5              | 0.5<br>-5.4                | 0.3<br>-6.6     | 0.1<br>-7.4                                                                            | 0.1<br>-6.6         | 0.4<br>-5.0        | 21.94<br>-44.26                    |                                         |                            |                                                    |                            |
|                                                                          |                                            |                |                                       |                              |                |                |                                                               |                          |                            |                 |                                                                                        |                     |                    |                                    |                                         |                            |                                                    |                            |
| RMCSD Secondary Storage Reservoirs<br>Reservoir # 1 Vol                  | ac-ft                                      | 52.7           | 83.5                                  | 160.2                        | 252.6          | 345.4          | 426.5                                                         | 518.8                    | 562.6                      | 539.2           | 420.9                                                                                  | 245.3               | 116.9              | 3724.59                            |                                         |                            |                                                    |                            |
| Reservoir # 1 Depth                                                      | ft                                         | 6.2            | 8.1                                   | 12.5                         | 17.3           | 21.7           | 25.1                                                          | 28.5                     | 29.9                       | 29.2            | 24.9                                                                                   | 17.0                | 10.0               | 230.39                             |                                         |                            |                                                    |                            |
| Reservoir #1 Surface Area<br>Reservoir #2 Vol                            | acre<br>ac-ft                              | 18.8           | 19.4                                  | 20.9                         | 22.6           | 24.1           | 25.2                                                          | 26.4                     | 26.9                       | 26.6            | 25.2                                                                                   | 22.5<br>57.5        | 20.1               | 278.71                             |                                         |                            |                                                    |                            |
| Reservoir # 2 Depth                                                      | ft                                         | 4.7            | 6.6                                   | 11.2                         | 16.3           | 20.7           | 24.2                                                          | 27.5                     | 29.0                       | 28.2            | 23.9                                                                                   | 15.9                | 8.7                | 216.95                             |                                         |                            |                                                    |                            |
| Reservoir # 2 Surface Area                                               | acre                                       | 3.4            | 3.7                                   | 4.3                          | 5.0            | 5.7            | 6.1                                                           | 6.6                      | 6.8                        | 6.7             | 6.1                                                                                    | 5.0                 | 4.0                | 63.42                              |                                         |                            |                                                    |                            |
| Contributing Water Shed Area                                             | acre                                       | 17.8           | 16.9                                  | 25.3                         | 12.4           | 10.3           | 8.6                                                           | 7.0                      | 6.3                        | 53.5<br>6.7     | 8.7                                                                                    | 12.5                | 15.9               | 137.87                             |                                         |                            |                                                    |                            |
| Reservoir Run-off                                                        | ac-ft                                      | 1.8            | 4.4                                   | 3.7                          | 4.1            | 3.3            | 2.8                                                           | 1.0                      | 0.2                        | 0.2             | 0.1                                                                                    | 0.1                 | 0.5                | 22.23                              |                                         |                            |                                                    |                            |
| Reservoir Precip (direct)<br>Reservoir Evaporation                       | ac-ft<br>ac-ft                             | 2.4            | 6.7                                   | 7.1                          | 10.3           | 10.8           | -6.8                                                          | 5.1<br>-10.7             | 1.5                        | 0.9             | 0.3                                                                                    | 0.2<br>-17.0        | 0.9                | 57.33                              |                                         |                            |                                                    |                            |
|                                                                          |                                            | 0.0            | 5.0                                   | 2.0                          | 2.0            |                | 0.0                                                           |                          | 17.0                       | 20.0            | /                                                                                      | 11.0                | 11.2               | 112.01                             |                                         |                            |                                                    |                            |
| RMCC Irrigation Lakes                                                    | ac-ft                                      | 0.1            | 0.4                                   | 0.4                          | 0.5            | 0.5            | 0.5                                                           | 0.2                      | 0.1                        | 0.0             | 0.0                                                                                    | 0.0                 | 0.1                | 2 74                               |                                         |                            |                                                    |                            |
| Lake Precipitation (direct)                                              | ac-ft                                      | 1.2            | 6.0                                   | 5.8                          | 7.7            | 7.5            | 7.4                                                           | 3.2                      | 0.9                        | 0.5             | 0.2                                                                                    | 0.2                 | 0.1                | 41.38                              |                                         |                            |                                                    |                            |
| Irrig. Lake Evaporation                                                  | ac-ft                                      | -3.4           | -1.4                                  | -0.9                         | -0.6           | -1.3           | -2.4                                                          | -3.7                     | -5.7                       | -7.0            | -7.8                                                                                   | -7.0                | -5.2               | -46.49                             |                                         |                            |                                                    |                            |
| Supplemental Water                                                       |                                            |                |                                       |                              |                |                |                                                               |                          |                            |                 |                                                                                        |                     |                    |                                    |                                         |                            |                                                    |                            |
| Supplemental Water                                                       | ac-ft                                      | 0.0            | 0.0                                   | 0.0                          | 0.0            | 0.0            | 0.0                                                           | 0.0                      | 0.0                        | 0.0             | 0.0                                                                                    | 0.0                 | 0.0                | 0.00                               |                                         |                            |                                                    |                            |
| Disposal                                                                 |                                            | ag -           |                                       | a -                          | 0.7            |                |                                                               |                          |                            |                 |                                                                                        | 495 -               |                    |                                    |                                         |                            |                                                    |                            |
| Residential Irrigation                                                   | ас-п<br>ac-ft                              | -20.3<br>-14.3 | 0.0                                   | 0.0                          | 0.0            | 0.0            | -0.8<br>-0.5                                                  | -16.4<br>-11.5           | -50.8<br>-35.8             | -111.4<br>-78.4 | -151.3<br>-106.4                                                                       | -120.5<br>-84.8     | -78.5<br>-55.2     | -550.00<br>-387.00                 |                                         |                            |                                                    |                            |
| Van Vleck Ranch Demand                                                   | ac-ft                                      | 0.0            | 0.0                                   | 0.0                          | 0.0            | 0.0            | 0.0                                                           | 0.0                      | 0.0                        | 0.0             | 0.0                                                                                    | 0.0                 | 0.0                | 0.00                               |                                         |                            |                                                    |                            |
| Effluent Storage                                                         |                                            |                |                                       |                              |                |                |                                                               |                          |                            |                 |                                                                                        |                     |                    |                                    |                                         |                            |                                                    |                            |
| Beginning Water Volume in Res.<br>Change in Water Volume                 | ac-ft<br>ac-ft                             | 65<br>38.1     | 103.1<br>94.7                         | 197.8<br>114.1               | 311.9<br>114.5 | 426.4<br>100.1 | 526.5<br>114.0                                                | 640.5<br>54.1            | 694.6<br>-28.9             | 665.7<br>-146.0 | 519.7<br>-216.8                                                                        | 302.9<br>-158.5     | 144.3<br>-78.7     | 4598.25                            |                                         |                            |                                                    |                            |
| Final Water Volume in Reservoirs                                         | ac-ft                                      | 103.1          | 197.8                                 | 311.9                        | 426.4          | 526.5          | 640.5                                                         | 694.6                    | 665.7                      | 519.7           | 302.9                                                                                  | 144.3               | 65.6               | 4598.85                            |                                         |                            |                                                    |                            |

|                        | 100     | Ave     |
|------------------------|---------|---------|
| Demand Info            |         |         |
| RMCC Demand            | 550 AFY | 550 AFY |
| Van Vleck Ranch        | 280 AFY | 0 AFY   |
| Residential Irrigation | 387 AFY | 387 AFY |
|                        |         |         |
|                        | 1217    | 937     |

#### Rancho Murieta Community Services District Water Balance - Buildout at Reduced 155 gpd per Customer

| <b>100-YR Modifie</b><br>100-yr Return Rat<br>100-yr modifier - Pan Evaporatic<br>Normalized Ii | rs<br>io 1.84 unitless<br>n 0.8 unitless<br>kl 61.74 mg/MGD | /yr Beginning | WWRP Influent Flows<br>Influent Flow- avg.<br>ADWF (June-Sep)<br>Water Volume in Res. | s & Site Info<br>270.00 r<br>0.68 r<br>65 a | ng/yr<br>ngd<br>Ic-ft | Pan Ev<br>Run-off ( | vaporation Coefficient<br>WWRP Site Area<br>Coefficient for WWRP | 0.75 uni<br>7.5 acr<br>0.9 uni | itless<br>res<br>itless | R<br>Run-off (<br>P | eservoir Watershed Area<br>Coefficient for Reservoirs<br>roportion in Reservoir #1 | 40<br>0.9<br>0.81 | D acres<br>9 unitless<br>1 % | Maximum Storag<br>Ige Volume of Rese<br>Water | ge of Reservoirs (1&2)<br>rvoirs w/ 2ft FB (1&2)<br>Balance Max Volume | 859.9 ac-ft<br>728.2 ac-ft<br>824.8 ac-ft | RMCC Lake Water Surface Area<br>RMCC Contributing Watershed<br>Run-off Coefficient | 11.2 acres<br>15.0 acres<br>0.2 unitless |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------|---------------------------------------------|-----------------------|---------------------|------------------------------------------------------------------|--------------------------------|-------------------------|---------------------|------------------------------------------------------------------------------------|-------------------|------------------------------|-----------------------------------------------|------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------|
| 100-yr I/I Volun<br>Average-yr I/I Volun                                                        | ie 75.5 mg<br>ie 11.2 mg                                    |               |                                                                                       |                                             |                       | w                   | /WRP Pond Area Total                                             | 10.7 acr                       | res                     | Р                   | roportion in Reservoir #2                                                          | 0.19              | 9 %                          |                                               |                                                                        |                                           |                                                                                    |                                          |
|                                                                                                 |                                                             | October       | November                                                                              | December                                    | January               | February            | March                                                            | April                          | May                     | June                | July                                                                               | August            | September                    | Total                                         |                                                                        |                                           |                                                                                    |                                          |
| Climate Inputs<br>Precipitation (Average)                                                       | Units<br>in                                                 | 1.32          | 3.47                                                                                  | 3.39                                        | 4.46                  | 4.34                | 4.30                                                             | 1.84                           | 0.52                    | 0.31                | 0.11                                                                               | 0.10              | 0.45                         | 24.61                                         |                                                                        |                                           |                                                                                    |                                          |
| Precipitation (100-YR)                                                                          | in                                                          | 2.43          | 6.38                                                                                  | 6.24                                        | 8.21                  | 7.99                | 7.91                                                             | 3.39                           | 0.96                    | 0.57                | 0.20                                                                               | 0.18              | 0.83                         | 45.28                                         |                                                                        |                                           |                                                                                    |                                          |
| Pan Evaporation                                                                                 | in                                                          | 4.89          | 2.06                                                                                  | 1.25                                        | 0.92                  | 1.90                | 3.47                                                             | 5.21                           | 8.07                    | 9.91                | 11.12                                                                              | 9.93              | 7.45                         | 66.18                                         |                                                                        |                                           |                                                                                    |                                          |
| Effective Lake Evaporation<br>Lake Evap - 100- vr Effective                                     | in                                                          | 3.67          | 1.55                                                                                  | 0.94                                        | 0.55                  | 1.43                | 2.60                                                             | 3.91                           | 6.05                    | 7.43                | 8.34                                                                               | 7.45              | 5.59                         | 49.64                                         |                                                                        |                                           |                                                                                    |                                          |
| Percolation                                                                                     | in                                                          | 0.00          | 0.00                                                                                  | 0.00                                        | 0.00                  | 0.00                | 0.00                                                             | 0.00                           | 0.00                    | 0.00                | 0.00                                                                               | 0.00              | 0.00                         | 0.00                                          |                                                                        |                                           |                                                                                    |                                          |
|                                                                                                 |                                                             |               |                                                                                       |                                             |                       |                     |                                                                  |                                |                         |                     |                                                                                    |                   |                              |                                               |                                                                        |                                           |                                                                                    |                                          |
| WW Influent - Monthly-Daily Flow                                                                | %                                                           | 8%            | 8%                                                                                    | 10%                                         | 9%                    | 8%                  | 10%                                                              | 9%                             | 8%                      | 8%                  | 8%                                                                                 | 8%                | 7%                           | 100%                                          |                                                                        |                                           |                                                                                    |                                          |
| # Days in Month                                                                                 | days                                                        | 31            | 30                                                                                    | 31                                          | 31                    | 28                  | 31                                                               | 30                             | 31                      | 30                  | 31                                                                                 | 31                | 30                           | 365                                           |                                                                        |                                           |                                                                                    |                                          |
|                                                                                                 |                                                             |               |                                                                                       |                                             |                       |                     |                                                                  |                                |                         |                     |                                                                                    |                   |                              |                                               |                                                                        |                                           |                                                                                    |                                          |
| Wastewater Influent                                                                             | MG                                                          | 21.5          | 21.2                                                                                  | 26.0                                        | 23.9                  | 21.1                | 26.8                                                             | 23.9                           | 22.5                    | 20.8                | 21.1                                                                               | 21.0              | 20.1                         | 270.00                                        | 1098.60                                                                |                                           |                                                                                    |                                          |
| 100-YR I/I Estimate                                                                             | ac-ft                                                       | 18.4          | 18.2                                                                                  | 22.3                                        | 20.5                  | 18.1                | 23.0                                                             | 20.5                           | 19.4                    | 17.9                | 18.2                                                                               | 18.1              | 17.3                         | 231.84                                        | 1060.44                                                                |                                           |                                                                                    |                                          |
| Average-YR I/I Estimate                                                                         | ac-ft                                                       |               |                                                                                       |                                             |                       |                     |                                                                  |                                |                         |                     |                                                                                    |                   |                              |                                               | 298.69                                                                 |                                           |                                                                                    |                                          |
| Site Run-off                                                                                    | ac-ft                                                       | 1.9           | 5.1                                                                                   | 5.0                                         | 6.6                   | 6.4                 | 6.3                                                              | 2.7                            | 0.8                     | 0.5                 | 0.2                                                                                | 0.1               | 0.7                          | 36.34                                         |                                                                        |                                           |                                                                                    |                                          |
| Pond Evaporation                                                                                | ac-ft                                                       | -3.3          | -1.4                                                                                  | -0.8                                        | -0.6                  | -1.3                | -2.3                                                             | -3.5                           | -5.4                    | -6.6                | -7.4                                                                               | -6.6              | -5.0                         | -44.26                                        |                                                                        |                                           |                                                                                    |                                          |
|                                                                                                 |                                                             |               |                                                                                       |                                             |                       |                     |                                                                  |                                |                         |                     |                                                                                    |                   |                              |                                               |                                                                        |                                           |                                                                                    |                                          |
| RMCSD Secondary Storage Reservoirs                                                              | as ft                                                       | 52.7          | 99 E                                                                                  | 101 E                                       | 201.1                 | 404.2               | E04 6                                                            | 617.1                          | 669.1                   | 638.0               | 406.4                                                                              | 296.7             | 122.1                        | 4261.02                                       |                                                                        |                                           |                                                                                    |                                          |
| Reservoir # 1 Depth                                                                             | ft                                                          | 6.2           | 8.4                                                                                   | 13.7                                        | 19.2                  | 24.2                | 28.0                                                             | 31.5                           | 32.9                    | 32.1                | 27.7                                                                               | 19.0              | 10.9                         | 253.80                                        |                                                                        |                                           |                                                                                    |                                          |
| Reservoir # 1 Surface Area                                                                      | acre                                                        | 18.8          | 19.5                                                                                  | 21.3                                        | 23.2                  | 24.9                | 26.2                                                             | 27.4                           | 27.9                    | 27.6                | 26.1                                                                               | 23.2              | 20.4                         | 286.66                                        |                                                                        |                                           |                                                                                    |                                          |
| Reservoir #2 Vol<br>Reservoir # 2 Denth                                                         | ac-ft<br>ft                                                 | 12.4          | 20.7                                                                                  | 42.6                                        | 68.3<br>18.2          | 94.8                | 118.4                                                            | 144.8                          | 156.7<br>31.8           | 149.7               | 116.4                                                                              | 67.2<br>18.0      | 31.0                         | 1022.95                                       |                                                                        |                                           |                                                                                    |                                          |
| Reservoir # 2 Surface Area                                                                      | acre                                                        | 3.4           | 3.7                                                                                   | 4.5                                         | 5.3                   | 6.0                 | 6.5                                                              | 7.0                            | 7.2                     | 7.1                 | 6.5                                                                                | 5.3               | 4.1                          | 66.70                                         |                                                                        |                                           |                                                                                    |                                          |
| Total Water Surface Area                                                                        | acre                                                        | 22.2          | 23.3                                                                                  | 25.8                                        | 28.5                  | 30.9                | 32.8                                                             | 34.4                           | 35.1                    | 34.7                | 32.6                                                                               | 28.4              | 24.5                         | 353.36                                        |                                                                        |                                           |                                                                                    |                                          |
| Contributing Water Shed Area                                                                    | acre                                                        | 17.8          | 16.7                                                                                  | 14.2                                        | 11.5                  | 9.1                 | 7.2                                                              | 5.6                            | 4.9                     | 5.3                 | 7.4                                                                                | 11.6              | 15.5                         | 126.64                                        |                                                                        |                                           |                                                                                    |                                          |
| Reservoir Precip (direct)                                                                       | ac-ft                                                       | 4.5           | 12.4                                                                                  | 13.4                                        | 19.5                  | 20.6                | 4.5                                                              | 9.7                            | 2.8                     | 1.6                 | 0.6                                                                                | 0.2               | 1.0                          | 108.85                                        |                                                                        |                                           |                                                                                    |                                          |
| Reservoir Evaporation                                                                           | ac-ft                                                       | -6.8          | -3.0                                                                                  | -2.0                                        | -1.6                  | -3.7                | -7.1                                                             | -11.2                          | -17.7                   | -21.5               | -22.7                                                                              | -17.6             | -11.4                        | -126.36                                       |                                                                        |                                           |                                                                                    |                                          |
| PMCC Irrigation Lakes                                                                           |                                                             |               |                                                                                       |                                             |                       |                     |                                                                  |                                |                         |                     |                                                                                    |                   |                              |                                               |                                                                        |                                           |                                                                                    |                                          |
| Lake Water Shed Run-off                                                                         | ac-ft                                                       | 0.2           | 0.4                                                                                   | 0.4                                         | 0.5                   | 0.5                 | 0.5                                                              | 0.2                            | 0.1                     | 0.0                 | 0.0                                                                                | 0.0               | 0.1                          | 2.81                                          |                                                                        |                                           |                                                                                    |                                          |
| Lake Precipitation (direct)                                                                     | ac-ft                                                       | 2.3           | 6.0                                                                                   | 5.8                                         | 7.7                   | 7.5                 | 7.4                                                              | 3.2                            | 0.9                     | 0.5                 | 0.2                                                                                | 0.2               | 0.8                          | 42.41                                         |                                                                        |                                           |                                                                                    |                                          |
| Irrig. Lake Evaporation                                                                         | ac-ft                                                       | -3.4          | -1.4                                                                                  | -0.9                                        | -0.6                  | -1.3                | -2.4                                                             | -3.7                           | -5.7                    | -7.0                | -7.8                                                                               | -7.0              | -5.2                         | -46.49                                        |                                                                        |                                           |                                                                                    |                                          |
| Supplemental Water                                                                              |                                                             |               |                                                                                       |                                             |                       |                     |                                                                  |                                |                         |                     |                                                                                    |                   |                              |                                               |                                                                        |                                           |                                                                                    |                                          |
| Supplemental Water                                                                              | ac-ft                                                       | 0.0           | 0.0                                                                                   | 0.0                                         | 0.0                   | 0.0                 | 0.0                                                              | 0.0                            | 0.0                     | 0.0                 | 0.0                                                                                | 0.0               | 0.0                          | 0.00                                          |                                                                        |                                           |                                                                                    |                                          |
| Disposal                                                                                        |                                                             | -40.9         | 0.0                                                                                   | 0.0                                         | 0.0                   | 0.0                 | -1.5                                                             | -33.0                          | -102.6                  | -224.9              | -305.3                                                                             | -243.3            | -158.5                       |                                               |                                                                        |                                           |                                                                                    |                                          |
| RMCC Golf Course Demand                                                                         | ac-ft                                                       | -20.3         | 0.0                                                                                   | 0.0                                         | 0.0                   | 0.0                 | -0.8                                                             | -16.4                          | -50.8                   | -111.4              | -151.3                                                                             | -120.5            | -78.5                        | -550.00                                       |                                                                        |                                           |                                                                                    |                                          |
| Residential Irrigation                                                                          | ac-ft                                                       | -9.8          | 0.0                                                                                   | 0.0                                         | 0.0                   | 0.0                 | -0.4                                                             | -7.9                           | -24.5                   | -53.7               | -72.9                                                                              | -58.1             | -37.8                        | -265.00                                       |                                                                        |                                           |                                                                                    |                                          |
| Van Vieck Ranch Demand                                                                          | ac-n                                                        | -10.9         | 0.0                                                                                   | 0.0                                         | 0.0                   | 0.0                 | -0.4                                                             | -8.8                           | -27.3                   | -59.8               | -81.1                                                                              | -04.7             | -42.1                        | -295.00                                       |                                                                        |                                           |                                                                                    |                                          |
| Effluent Storage                                                                                |                                                             |               |                                                                                       |                                             |                       |                     |                                                                  |                                |                         |                     |                                                                                    |                   |                              |                                               |                                                                        |                                           |                                                                                    |                                          |
| Beginning Water Volume in Res.                                                                  | ac-ft                                                       | 65            | 109.2                                                                                 | 224.1                                       | 359.4                 | 499.0               | 623.0                                                            | 761.9                          | 824.8                   | 787.7               | 612.9                                                                              | 353.9             | 163.1                        | 5383.97                                       |                                                                        |                                           |                                                                                    |                                          |
| Final Water Volume in Reservoirs                                                                | ac-ft                                                       | 109.2         | 224.1                                                                                 | 359.4                                       | 499.0                 | 623.0               | 761.9                                                            | 824.8                          | 787.7                   | 612.9               | 353.9                                                                              | 163.1             | 67                           | 5385.97                                       |                                                                        |                                           |                                                                                    |                                          |
|                                                                                                 |                                                             |               |                                                                                       |                                             |                       |                     |                                                                  |                                |                         |                     |                                                                                    |                   |                              |                                               |                                                                        |                                           |                                                                                    |                                          |
|                                                                                                 |                                                             | October       | November                                                                              | December                                    | lanuary               | February            | Average-yr Level o<br>March                                      | f Annual Precipitatic<br>April | on<br>Mav               | lune                | July                                                                               | August            | September                    | Total                                         |                                                                        |                                           |                                                                                    |                                          |
| Climate Inputs                                                                                  | Units                                                       | October       | Hovember                                                                              | becember                                    | Junuary               | rebruary            | indicit.                                                         |                                | indy                    | June                | 3017                                                                               | Hugust            | September                    | - Court                                       |                                                                        |                                           |                                                                                    |                                          |
| Precipitation (Average)                                                                         | in                                                          | 1.32          | 3.47                                                                                  | 3.39                                        | 4.46                  | 4.34                | 4.30                                                             | 1.84                           | 0.52                    | 0.31                | 0.11                                                                               | 0.10              | 0.45                         | 24.61                                         |                                                                        |                                           |                                                                                    |                                          |
| Pan Evaporation                                                                                 | in                                                          | 4.89          | 2.06                                                                                  | 1.25                                        | 0.92                  | 1.90                | 3.47                                                             | 5.21                           | 8.07                    | 9.91                | 11.12                                                                              | 9.93              | 7.45                         | 45.28                                         |                                                                        |                                           |                                                                                    |                                          |
| Effective Lake Evaporation                                                                      | in                                                          | 3.67          | 1.55                                                                                  | 0.94                                        | 0.69                  | 1.43                | 2.60                                                             | 3.91                           | 6.05                    | 7.43                | 8.34                                                                               | 7.45              | 5.59                         | 49.64                                         |                                                                        |                                           |                                                                                    |                                          |
| Lake Evap - 100- yr Effective                                                                   | in                                                          | 3.67          | 1.55                                                                                  | 0.75                                        | 0.55                  | 1.14                | 2.08                                                             | 3.13                           | 6.05                    | 7.43                | 8.34                                                                               | 7.45              | 5.59                         | 47.72                                         |                                                                        |                                           |                                                                                    |                                          |
| Percolation                                                                                     | in                                                          | 0.00          | 0.00                                                                                  | 0.00                                        | 0.00                  | 0.00                | 0.00                                                             | 0.00                           | 0.00                    | 0.00                | 0.00                                                                               | 0.00              | 0.00                         | 0.00                                          |                                                                        |                                           |                                                                                    |                                          |
| RMCSD WWRP                                                                                      |                                                             |               |                                                                                       |                                             |                       |                     |                                                                  |                                |                         |                     |                                                                                    |                   |                              |                                               |                                                                        |                                           |                                                                                    |                                          |
| WW Influent - Monthly-Daily Flow                                                                | %<br>dave                                                   | 8%            | 8%                                                                                    | 10%                                         | 9%                    | 8%                  | 10%                                                              | 9%                             | 8%                      | 8%                  | 8%                                                                                 | 8%                | 7%                           | 100%                                          |                                                                        |                                           |                                                                                    |                                          |
|                                                                                                 | 0075                                                        | 01            | 50                                                                                    | 31                                          | 51                    | 20                  | 31                                                               | 50                             | 51                      | 50                  | 51                                                                                 | 51                | 50                           | 505                                           |                                                                        |                                           |                                                                                    |                                          |
| Wastewater Influent                                                                             | MG                                                          | 21.5          | 21.2                                                                                  | 26.0                                        | 23.9                  | 21.1                | 26.8                                                             | 23.9                           | 22.5                    | 20.8                | 21.1                                                                               | 21.0              | 20.1                         | 270.00                                        |                                                                        |                                           |                                                                                    |                                          |
| wastewater influent<br>100-YR I/I Estimate                                                      | ac-tt<br>ac-ft                                              | 65.9          | 64.9                                                                                  | 79.8                                        | 73.4                  | 64.6                | 82.1                                                             | /3.4                           | 69.2                    | 63.9                | 64.9                                                                               | 64.6              | 61.8                         | 828.60                                        |                                                                        |                                           |                                                                                    |                                          |
| Average-YR I/I Estimate                                                                         | ac-ft                                                       | 2.7           | 2.7                                                                                   | 3.3                                         | 3.1                   | 2.7                 | 3.4                                                              | 3.1                            | 2.9                     | 2.7                 | 2.7                                                                                | 2.7               | 2.6                          | 34.52                                         | 863.12                                                                 |                                           |                                                                                    |                                          |
| Site Run-off                                                                                    | ac-ft                                                       | 1.1           | 2.8                                                                                   | 2.7                                         | 3.6                   | 3.5                 | 3.5                                                              | 1.5                            | 0.4                     | 0.2                 | 0.1                                                                                | 0.1               | 0.4                          | 19.75                                         |                                                                        |                                           |                                                                                    |                                          |
| Pond Evaporation                                                                                | ac-ft                                                       | -3.3          | -1.4                                                                                  | -0.8                                        | -0.6                  | -1.3                | 3.8<br>-2.3                                                      | -3.5                           | -5.4                    | -6.6                | -7.4                                                                               | -6.6              | -5.0                         | -44.26                                        |                                                                        |                                           |                                                                                    |                                          |
| · · · · · · · · · · · · · · · · · · ·                                                           |                                                             |               |                                                                                       | -                                           |                       | -                   |                                                                  |                                |                         |                     |                                                                                    | -                 |                              | -                                             |                                                                        |                                           |                                                                                    |                                          |
| RMCSD Secondary Storage Reservoirs                                                              | acift                                                       | E4 0          | 70.2                                                                                  | 149.2                                       | 221.2                 | 215.2               | 200 4                                                            | 471.4                          | 500 6                   | 197 4               | 292.0                                                                              | 226.2             | 113.1                        | 2405 65                                       |                                                                        |                                           |                                                                                    |                                          |
| Reservoir # 1 Depth                                                                             | ft                                                          | 6.3           | 7.8                                                                                   | 140.5                                       | 16.3                  | 20.4                | 23.6                                                             | 26.8                           | 28.2                    | 27.4                | 23.3                                                                               | 16.0              | 9.8                          | 217.57                                        |                                                                        |                                           |                                                                                    |                                          |
| Reservoir # 1 Surface Area                                                                      | acre                                                        | 18.8          | 19.4                                                                                  | 20.7                                        | 22.2                  | 23.6                | 24.7                                                             | 25.8                           | 26.3                    | 26.0                | 24.6                                                                               | 22.1              | 20.0                         | 274.36                                        |                                                                        |                                           |                                                                                    |                                          |
| Reservoir #2 Vol<br>Reservoir # 2 Denth                                                         | ac-ft<br>ft                                                 | 12.7          | 18.6                                                                                  | 34.8                                        | 54.2                  | 73.9                | 91.2<br>22.6                                                     | 110.6                          | 119.5                   | 114.3               | 89.6<br>22.3                                                                       | 53.1<br>14 9      | 26.3                         | 798.86                                        |                                                                        |                                           |                                                                                    |                                          |
| Reservoir # 2 Surface Area                                                                      | acre                                                        | 3.4           | 3.7                                                                                   | 4.2                                         | 4.9                   | 5.5                 | 5.9                                                              | 6.4                            | 6.6                     | 6.5                 | 5.9                                                                                | 4.8               | 3.9                          | 61.61                                         |                                                                        |                                           |                                                                                    |                                          |
| Total Water Surface Area                                                                        | acre                                                        | 22.3          | 23.0                                                                                  | 25.0                                        | 27.1                  | 29.1                | 30.6                                                             | 32.2                           | 32.8                    | 32.5                | 30.5                                                                               | 27.0              | 24.0                         | 335.97                                        |                                                                        |                                           |                                                                                    |                                          |
| Contributing water Shed Area<br>Reservoir Run-off                                               | acre<br>ac-ft                                               | 17.7          | 17.0                                                                                  | 15.0<br>3.8                                 | 12.9                  | 10.9                | 9.4<br>3.0                                                       | 7.8<br>1.1                     | 7.2<br>0.3              | 7.5<br>0.2          | 9.5                                                                                | 13.0              | 16.0                         | 144.03<br>23.14                               |                                                                        |                                           |                                                                                    |                                          |
| Reservoir Precip (direct)                                                                       | ac-ft                                                       | 2.4           | 6.7                                                                                   | 7.0                                         | 10.1                  | 10.5                | 11.0                                                             | 4.9                            | 1.4                     | 0.8                 | 0.3                                                                                | 0.2               | 0.9                          | 56.32                                         |                                                                        |                                           |                                                                                    |                                          |
| Reservoir Evaporation                                                                           | ac-ft                                                       | -6.8          | -3.0                                                                                  | -1.9                                        | -1.6                  | -3.5                | -6.6                                                             | -10.5                          | -16.6                   | -20.1               | -21.2                                                                              | -16.7             | -11.2                        | -119.62                                       |                                                                        |                                           |                                                                                    |                                          |
| RMCC Irrigation Lakes                                                                           |                                                             |               |                                                                                       |                                             |                       |                     |                                                                  |                                |                         |                     |                                                                                    |                   |                              |                                               |                                                                        |                                           |                                                                                    |                                          |
| Lake Water Shed Run-off                                                                         | ac-ft                                                       | 0.1           | 0.4                                                                                   | 0.4                                         | 0.5                   | 0.5                 | 0.5                                                              | 0.2                            | 0.1                     | 0.0                 | 0.0                                                                                | 0.0               | 0.1                          | 2.74                                          |                                                                        |                                           |                                                                                    |                                          |
| Lake Precipitation (direct)                                                                     | ac-ft                                                       | 1.2           | 6.0                                                                                   | 5.8                                         | 7.7                   | 7.5                 | 7.4                                                              | 3.2                            | 0.9                     | 0.5                 | 0.2                                                                                | 0.2               | 0.8                          | 41.38                                         |                                                                        |                                           |                                                                                    |                                          |
| Irrig. Lake Evaporation                                                                         | ac-tt                                                       | -3.4          | -1.4                                                                                  | -0.9                                        | -0.6                  | -1.3                | -2.4                                                             | -3.7                           | -5.7                    | -7.0                | -7.8                                                                               | -7.0              | -5.2                         | -46.49                                        |                                                                        |                                           |                                                                                    |                                          |
| Supplemental Water                                                                              |                                                             |               |                                                                                       |                                             |                       |                     |                                                                  |                                |                         |                     |                                                                                    |                   |                              |                                               |                                                                        |                                           |                                                                                    |                                          |
| Supplemental Water                                                                              | ac-ft                                                       | 0.0           | 0.0                                                                                   | 0.0                                         | 0.0                   | 0.0                 | 0.0                                                              | 0.0                            | 0.0                     | 0.0                 | 0.0                                                                                | 0.0               | 0.0                          | 0.00                                          |                                                                        |                                           |                                                                                    |                                          |
| Disposal                                                                                        |                                                             |               |                                                                                       |                                             |                       |                     |                                                                  |                                |                         |                     |                                                                                    |                   |                              |                                               |                                                                        |                                           |                                                                                    |                                          |
| RMCC Golf Course Demand                                                                         | ac-ft                                                       | -20.3         | 0.0                                                                                   | 0.0                                         | 0.0                   | 0.0                 | -0.8                                                             | -16.4                          | -50.8                   | -111.4              | -151.3                                                                             | -120.5            | -78.5                        | -550.00                                       |                                                                        |                                           |                                                                                    |                                          |
| Residential Irrigation                                                                          | ac-ft<br>ac-ft                                              | -9.8          | 0.0                                                                                   | 0.0                                         | 0.0                   | 0.0                 | -0.4                                                             | -7.9                           | -24.5                   | -53.7               | -72.9                                                                              | -58.1             | -37.8                        | -265.00                                       | -815.00                                                                |                                           |                                                                                    |                                          |
| van vieek namen berliditu                                                                       | ac-11                                                       | 0.0           | 0.0                                                                                   | 0.0                                         | 0.0                   | 0.0                 | 0.0                                                              | 0.0                            | 0.0                     | 0.0                 | 0.0                                                                                | 0.0               | 0.0                          | 0.00                                          |                                                                        |                                           |                                                                                    |                                          |
| Effluent Storage                                                                                |                                                             |               | 07.7                                                                                  | 405 -                                       | 207 -                 |                     | 470 -                                                            | 502.0                          | 606 ·                   |                     | 174.5                                                                              |                   |                              |                                               |                                                                        |                                           |                                                                                    |                                          |
| Beginning water volume in Res.<br>Change in Water Volume                                        | ac-rt<br>ac-ft                                              | 65<br>32.9    | 97.9<br>85.2                                                                          | 183.0                                       | 285.4<br>103.7        | 389.1<br>90.7       | 4/9.8                                                            | 582.U<br>47.1                  | -27.4                   | -130.2              | 4/1.6                                                                              | 2/9.4<br>-141.0   | -70.3                        | 4202.50                                       |                                                                        |                                           |                                                                                    |                                          |
| Final Water Volume in Reservoirs                                                                | ac-ft                                                       | 97.9          | 183.0                                                                                 | 285.4                                       | 389.1                 | 479.8               | 582.0                                                            | 629.1                          | 601.8                   | 471.6               | 279.4                                                                              | 138.4             | 68.0                         | 4205.52                                       |                                                                        |                                           |                                                                                    |                                          |

|                        | 100     | Ave     |
|------------------------|---------|---------|
| Demand Info            |         |         |
| RMCC Demand            | 550 AFY | 550 AFY |
| Van Vleck Ranch        | 295 AFY | 0 AFY   |
| Residential Irrigation | 265 AFY | 265 AFY |
|                        |         |         |
|                        | 1110    | 815     |

# Rancho Murieta Community Services District Water Balance - Buildout at Reduced 165 per Customer

| <b>100-YR Modifier</b><br>100-yr Return Ratio<br>100-yr modifier - Pan Evaporation<br>Normalized I&<br>100-yr I/ Volume | 5<br>1.84 unitless<br>0.8 unitless<br>61.74 mg/MGD/yr<br>76.2 mg | Beginning  | WWRP Influent Flows<br>Influent Flow- avg.<br>ADWF (June-Sep)<br>Water Volume in Res. | & Site Info<br>277.00 n<br>0.70 n<br>65 a | ng/yr<br>ngd<br>ic-ft | Pan Eva<br>Run-off C<br>WV | aporation Coefficient<br>WWRP Site Area<br>oefficient for WWRP<br>MRP Pond Area Total | 0.75 uni<br>7.5 acr<br>0.9 uni<br>10 7 acr | tless<br>es<br>tless<br>es | Ri<br>Run-off C<br>Pi<br>pi | eservoir Watershed Area<br>coefficient for Reservoirs<br>oportion in Reservoir #1<br>oportion in Reservoir #2 | 40<br>0.9<br>0.81 | ) acres<br>9 unitless<br>L %            | Maximum Storage of Rese<br>ige Volume of Reservoirs w/ 2<br>Water Balance M | rvoirs (1&2)<br>2ft FB (1&2)<br>Aax Volume | 859.9 ac-ft<br>728.2 ac-ft<br>837.3 ac-ft | RMCC Lake Water Surface Area<br>RMCC Contributing Watershed<br>Run-off Coefficient | 11.2 acres<br>15.0 acres<br>0.2 unitless |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------|-------------------------------------------|-----------------------|----------------------------|---------------------------------------------------------------------------------------|--------------------------------------------|----------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------|
| Average-yr I/I Volume                                                                                                   | 11.2 mg                                                          |            |                                                                                       |                                           |                       |                            | 100-yr Level of A                                                                     | Annual Precipitation                       |                            |                             | oportion in Reservoir #2                                                                                      | 0.13              | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                                                             |                                            |                                           |                                                                                    |                                          |
| Climate Inpute                                                                                                          | Unito                                                            | October    | November                                                                              | December                                  | January               | February                   | March                                                                                 | April                                      | May                        | June                        | July                                                                                                          | August            | September                               | Total                                                                       |                                            |                                           |                                                                                    |                                          |
| Precipitation (Average)                                                                                                 | in                                                               | 1.32       | 3.47                                                                                  | 3.39                                      | 4.46                  | 4.34                       | 4.30                                                                                  | 1.84                                       | 0.52                       | 0.31                        | 0.11                                                                                                          | 0.10              | 0.45                                    | 24.61                                                                       |                                            |                                           |                                                                                    |                                          |
| Precipitation (100-YR)                                                                                                  | in                                                               | 2.43       | 6.38                                                                                  | 6.24                                      | 8.21                  | 7.99                       | 7.91                                                                                  | 3.39                                       | 0.96                       | 0.57                        | 0.20                                                                                                          | 0.18              | 0.83                                    | 45.28                                                                       |                                            |                                           |                                                                                    |                                          |
| Pan Evaporation                                                                                                         | in                                                               | 4.89       | 2.06                                                                                  | 1.25                                      | 0.92                  | 1.90                       | 3.47                                                                                  | 5.21                                       | 8.07                       | 9.91                        | 11.12                                                                                                         | 9.93              | 7.45                                    | 66.18                                                                       |                                            |                                           |                                                                                    |                                          |
| Effective Lake Evaporation                                                                                              | in                                                               | 3.67       | 1.55                                                                                  | 0.94                                      | 0.69                  | 1.43                       | 2.60                                                                                  | 3.91                                       | 6.05                       | 7.43                        | 8.34                                                                                                          | 7.45              | 5.59                                    | 49.64                                                                       |                                            |                                           |                                                                                    |                                          |
| Lake Evap - 100- yr Effective                                                                                           | in                                                               | 3.67       | 1.55                                                                                  | 0.75                                      | 0.55                  | 1.14                       | 2.08                                                                                  | 3.13                                       | 6.05                       | 7.43                        | 8.34                                                                                                          | 7.45              | 5.59                                    | 47.72                                                                       |                                            |                                           |                                                                                    |                                          |
| Percolation                                                                                                             | in                                                               | 0.00       | 0.00                                                                                  | 0.00                                      | 0.00                  | 0.00                       | 0.00                                                                                  | 0.00                                       | 0.00                       | 0.00                        | 0.00                                                                                                          | 0.00              | 0.00                                    | 0.00                                                                        |                                            |                                           |                                                                                    |                                          |
| RMCSD WWRP                                                                                                              |                                                                  |            |                                                                                       |                                           |                       |                            |                                                                                       |                                            |                            |                             |                                                                                                               |                   |                                         |                                                                             |                                            |                                           |                                                                                    |                                          |
| WW Influent - Monthly-Daily Flow                                                                                        | %                                                                | 8%         | 8%                                                                                    | 10%                                       | 9%                    | 8%                         | 10%                                                                                   | 9%                                         | 8%                         | 8%                          | 8%                                                                                                            | 8%                | 7%                                      | 100%                                                                        |                                            |                                           |                                                                                    |                                          |
| # Days in Month                                                                                                         | days                                                             | 31         | 30                                                                                    | 31                                        | 31                    | 28                         | 31                                                                                    | 30                                         | 31                         | 30                          | 31                                                                                                            | 31                | 30                                      | 365                                                                         |                                            |                                           |                                                                                    |                                          |
|                                                                                                                         |                                                                  |            |                                                                                       |                                           |                       |                            |                                                                                       |                                            |                            |                             |                                                                                                               |                   |                                         |                                                                             |                                            |                                           |                                                                                    |                                          |
| Wastewater Influent                                                                                                     | MG                                                               | 22.0       | 21.7                                                                                  | 26.7                                      | 24.5                  | 21.6                       | 27.4                                                                                  | 24.6                                       | 23.1                       | 21.4                        | 21.7                                                                                                          | 21.6              | 20.7                                    | 277.00                                                                      | 1003.00                                    |                                           |                                                                                    |                                          |
| 100-YR I/LEstimate                                                                                                      | ac-It                                                            | 18.6       | 19.2                                                                                  | 81.9                                      | 75.3                  | 19.2                       | 84.2<br>22.2                                                                          | 75.5                                       | 19.5                       | 19.0                        | 19.2                                                                                                          | 19.3              | 17.4                                    | 222.97                                                                      | 1083.90                                    |                                           |                                                                                    |                                          |
| Average-YR I/I Estimate                                                                                                 | ac-ft                                                            | 10.0       | 10.0                                                                                  | 22.0                                      | 20.7                  | 10.1                       | 23.2                                                                                  | 20.7                                       | 10.0                       | 10.0                        | 10.5                                                                                                          | 10.2              | 17.4                                    | 255.67                                                                      |                                            |                                           |                                                                                    |                                          |
| Site Run-off                                                                                                            | ac-ft                                                            | 1.9        | 5.1                                                                                   | 5.0                                       | 6.6                   | 6.4                        | 6.3                                                                                   | 2.7                                        | 0.8                        | 0.5                         | 0.2                                                                                                           | 0.1               | 0.7                                     | 36.34                                                                       |                                            |                                           |                                                                                    |                                          |
| Pond Precipitation (direct)                                                                                             | ac-ft                                                            | 2.2        | 5.7                                                                                   | 5.6                                       | 7.3                   | 7.1                        | 7.1                                                                                   | 3.0                                        | 0.9                        | 0.5                         | 0.2                                                                                                           | 0.2               | 0.7                                     | 40.38                                                                       |                                            |                                           |                                                                                    |                                          |
| Pond Evaporation                                                                                                        | ac-ft                                                            | -3.3       | -1.4                                                                                  | -0.8                                      | -0.6                  | -1.3                       | -2.3                                                                                  | -3.5                                       | -5.4                       | -6.6                        | -7.4                                                                                                          | -6.6              | -5.0                                    | -44.26                                                                      |                                            |                                           |                                                                                    |                                          |
| RMCSD Secondary Storage Reservoirs                                                                                      |                                                                  |            |                                                                                       |                                           |                       |                            |                                                                                       |                                            |                            |                             |                                                                                                               |                   |                                         |                                                                             |                                            |                                           |                                                                                    |                                          |
| Reservoir # 1 Vol                                                                                                       | ac-ft                                                            | 52.7       | 89.2                                                                                  | 183.8                                     | 295.2                 | 410.0                      | 511.9                                                                                 | 626.2                                      | 678.2                      | 647.8                       | 503.6                                                                                                         | 289.7             | 132.2                                   | 4420.43                                                                     |                                            |                                           |                                                                                    |                                          |
| Reservoir # 1 Depth                                                                                                     | ft                                                               | 6.2        | 8.4                                                                                   | 13.8                                      | 19.4                  | 24.5                       | 28.3                                                                                  | 31.8                                       | 33.1                       | 32.4                        | 28.0                                                                                                          | 19.2              | 10.9                                    | 255.80                                                                      |                                            |                                           |                                                                                    |                                          |
| Reservoir # 1 Surface Area                                                                                              | acre                                                             | 18.8       | 19.6                                                                                  | 21.4                                      | 23.3                  | 25.0                       | 26.3                                                                                  | 27.5                                       | 28.0                       | 27.7                        | 26.2                                                                                                          | 23.2              | 20.4                                    | 287.34                                                                      |                                            |                                           |                                                                                    |                                          |
| Reservoir #2 Vol                                                                                                        | ac-ft                                                            | 12.4       | 20.9                                                                                  | 43.1                                      | 69.2                  | 96.2                       | 120.1                                                                                 | 146.9                                      | 159.1                      | 152.0                       | 118.1                                                                                                         | 67.9              | 31.0                                    | 1036.89                                                                     |                                            |                                           |                                                                                    |                                          |
| Reservoir # 2 Deptri<br>Reservoir # 2 Surface Area                                                                      | acre                                                             | 4./<br>3.4 | 7.0                                                                                   | 4.5                                       | 18.4                  | 23.5<br>6.0                | ∠7.3<br>6.6                                                                           | 50.8<br>7.1                                | 7.2                        | 31.3<br>7 1                 | 27.0                                                                                                          | 18.1              | 9.0<br>4 1                              | 242.39<br>66.97                                                             |                                            |                                           |                                                                                    |                                          |
| Total Water Surface Area                                                                                                | acre                                                             | 22.2       | 23.3                                                                                  | 25.9                                      | 28.6                  | 31.1                       | 32.9                                                                                  | 34.6                                       | 35.2                       | 34.8                        | 32.7                                                                                                          | 28.5              | 24.5                                    | 354.32                                                                      |                                            |                                           |                                                                                    |                                          |
| Contributing Water Shed Area                                                                                            | acre                                                             | 17.8       | 16.7                                                                                  | 14.1                                      | 11.4                  | 8.9                        | 7.1                                                                                   | 5.4                                        | 4.8                        | 5.2                         | 7.3                                                                                                           | 11.5              | 15.5                                    | 125.68                                                                      |                                            |                                           |                                                                                    |                                          |
| Reservoir Run-off                                                                                                       | ac-ft                                                            | 3.2        | 8.0                                                                                   | 6.6                                       | 7.0                   | 5.4                        | 4.2                                                                                   | 1.4                                        | 0.3                        | 0.2                         | 0.1                                                                                                           | 0.2               | 1.0                                     | 37.60                                                                       |                                            |                                           |                                                                                    |                                          |
| Reservoir Precip (direct)                                                                                               | ac-ft                                                            | 4.5        | 12.4                                                                                  | 13.5                                      | 19.6                  | 20.7                       | 21.7                                                                                  | 9.8                                        | 2.8                        | 1.7                         | 0.6                                                                                                           | 0.4               | 1.7                                     | 109.17                                                                      |                                            |                                           |                                                                                    |                                          |
| Reservoir Evaporation                                                                                                   | ас-п                                                             | -6.8       | -3.0                                                                                  | -2.0                                      | -1.6                  | -3.7                       | -7.1                                                                                  | -11.3                                      | -17.8                      | -21.6                       | -22.8                                                                                                         | -1/./             | -11.4                                   | -126./1                                                                     |                                            |                                           |                                                                                    |                                          |
| RMCC Irrigation Lakes                                                                                                   |                                                                  |            |                                                                                       |                                           |                       |                            |                                                                                       |                                            |                            |                             |                                                                                                               |                   |                                         |                                                                             |                                            |                                           |                                                                                    |                                          |
| Lake Water Shed Run-off                                                                                                 | ac-ft                                                            | 0.2        | 0.4                                                                                   | 0.4                                       | 0.5                   | 0.5                        | 0.5                                                                                   | 0.2                                        | 0.1                        | 0.0                         | 0.0                                                                                                           | 0.0               | 0.1                                     | 2.81                                                                        |                                            |                                           |                                                                                    |                                          |
| Lake Precipitation (direct)                                                                                             | ac-ft                                                            | 2.3        | 6.0                                                                                   | 5.8                                       | 7.7                   | 7.5                        | 7.4                                                                                   | 3.2                                        | 0.9                        | 0.5                         | 0.2                                                                                                           | 0.2               | 0.8                                     | 42.41                                                                       |                                            |                                           |                                                                                    |                                          |
| Irrig. Lake Evaporation                                                                                                 | ac-ft                                                            | -3.4       | -1.4                                                                                  | -0.9                                      | -0.6                  | -1.3                       | -2.4                                                                                  | -3.7                                       | -5.7                       | -7.0                        | -7.8                                                                                                          | -7.0              | -5.2                                    | -46.49                                                                      |                                            |                                           |                                                                                    |                                          |
| Supplemental Water                                                                                                      |                                                                  |            |                                                                                       |                                           |                       |                            |                                                                                       |                                            |                            |                             |                                                                                                               |                   |                                         |                                                                             |                                            |                                           |                                                                                    |                                          |
| Supplemental Water                                                                                                      | ac-ft                                                            | 0.0        | 0.0                                                                                   | 0.0                                       | 0.0                   | 0.0                        | 0.0                                                                                   | 0.0                                        | 0.0                        | 0.0                         | 0.0                                                                                                           | 0.0               | 0.0                                     | 0.00                                                                        |                                            |                                           |                                                                                    |                                          |
|                                                                                                                         |                                                                  | 218.8      | 211.8                                                                                 | 218.8                                     | 218.8                 | 199.4                      | 218.8                                                                                 | 211.8                                      | 218.8                      | 211.8                       | 218.8                                                                                                         | 218.8             | 211.8                                   |                                                                             |                                            |                                           |                                                                                    |                                          |
| Disposal                                                                                                                |                                                                  | -41.8      | 0.0                                                                                   | 0.0                                       | 0.0                   | 0.0                        | -1.6                                                                                  | -33.8                                      | -104.9                     | -230.0                      | -312.2                                                                                                        | -248.8            | -162.0                                  | 550.00                                                                      |                                            |                                           |                                                                                    |                                          |
| RMUL Golf Course Demand<br>Residential Irrigation                                                                       | ac-rt<br>ac-ft                                                   | -20.3      | 0.0                                                                                   | 0.0                                       | 0.0                   | 0.0                        | -0.8                                                                                  | -16.4                                      | -50.8                      | -111.4                      | -151.3                                                                                                        | -120.5            | -78.5                                   | -550.00                                                                     |                                            |                                           |                                                                                    |                                          |
| Van Vleck Ranch Demand                                                                                                  | ac-ft                                                            | -10.9      | 0.0                                                                                   | 0.0                                       | 0.0                   | 0.0                        | -0.4                                                                                  | -8.8                                       | -27.3                      | -59.8                       | -81.1                                                                                                         | -64.7             | -42.1                                   | -295.00                                                                     |                                            |                                           |                                                                                    |                                          |
|                                                                                                                         |                                                                  |            |                                                                                       |                                           |                       |                            |                                                                                       |                                            |                            |                             |                                                                                                               |                   |                                         |                                                                             |                                            |                                           |                                                                                    |                                          |
| Effluent Storage                                                                                                        |                                                                  |            |                                                                                       |                                           |                       | 505.0                      | 600.0                                                                                 | 770.4                                      |                            | 700.0                       | 604 P                                                                                                         | 257.6             | 462.2                                   | 5 4 5 7 0 0                                                                 |                                            |                                           |                                                                                    |                                          |
| Beginning Water Volume in Res.                                                                                          | ac-ft                                                            | 65         | 110.2                                                                                 | 226.9                                     | 364.4                 | 506.2                      | 632.0                                                                                 | 773.1                                      | 837.3                      | 799.8                       | 621.7                                                                                                         | 357.6             | 163.2                                   | 5457.33                                                                     |                                            |                                           |                                                                                    |                                          |
| Final Water Volume in Reservoirs                                                                                        | ac-ft                                                            | 43.2       | 226.9                                                                                 | 364.4                                     | 506.2                 | 632.0                      | 773.1                                                                                 | 837.3                                      | 799.8                      | 621.7                       | 357.6                                                                                                         | 163.2             | -58.0                                   | 5457.52                                                                     |                                            |                                           |                                                                                    |                                          |
|                                                                                                                         |                                                                  |            |                                                                                       |                                           |                       |                            |                                                                                       |                                            |                            |                             |                                                                                                               |                   |                                         |                                                                             |                                            |                                           |                                                                                    |                                          |
|                                                                                                                         |                                                                  |            |                                                                                       |                                           |                       |                            | Average-yr Level o                                                                    | f Annual Precipitatio                      | n<br>                      |                             |                                                                                                               |                   |                                         |                                                                             |                                            |                                           |                                                                                    |                                          |
| Climate Inpute                                                                                                          | Unito                                                            | October    | November                                                                              | December                                  | January               | February                   | March                                                                                 | April                                      | May                        | June                        | July                                                                                                          | August            | September                               | Total                                                                       |                                            |                                           |                                                                                    |                                          |
| Precipitation (Average)                                                                                                 | in                                                               | 1.32       | 3.47                                                                                  | 3.39                                      | 4.46                  | 4.34                       | 4.30                                                                                  | 1.84                                       | 0.52                       | 0.31                        | 0.11                                                                                                          | 0.10              | 0.45                                    | 24.61                                                                       |                                            |                                           |                                                                                    |                                          |
| Precipitation (100-YR)                                                                                                  | in                                                               | 2.43       | 6.38                                                                                  | 6.24                                      | 8.21                  | 7.99                       | 7.91                                                                                  | 3.39                                       | 0.96                       | 0.57                        | 0.20                                                                                                          | 0.18              | 0.83                                    | 45.28                                                                       |                                            |                                           |                                                                                    |                                          |
| Pan Evaporation                                                                                                         | in                                                               | 4.89       | 2.06                                                                                  | 1.25                                      | 0.92                  | 1.90                       | 3.47                                                                                  | 5.21                                       | 8.07                       | 9.91                        | 11.12                                                                                                         | 9.93              | 7.45                                    | 66.18                                                                       |                                            |                                           |                                                                                    |                                          |
| Effective Lake Evaporation                                                                                              | in                                                               | 3.67       | 1.55                                                                                  | 0.94                                      | 0.69                  | 1.43                       | 2.60                                                                                  | 3.91                                       | 6.05                       | 7.43                        | 8.34                                                                                                          | 7.45              | 5.59                                    | 49.64                                                                       |                                            |                                           |                                                                                    |                                          |
| Lake Evap - 100- yr Effective<br>Percolation                                                                            | in                                                               | 3.67       | 1.55                                                                                  | 0.75                                      | 0.55                  | 1.14                       | 2.08                                                                                  | 3.13                                       | 6.05                       | 7.43                        | 8.34                                                                                                          | 7.45              | 5.59                                    | 47.72                                                                       |                                            |                                           |                                                                                    |                                          |
| (c)condition                                                                                                            |                                                                  | 0.00       | 0.00                                                                                  | 0.00                                      | 0.00                  | 0.00                       | 0.00                                                                                  | 0.00                                       | 0.00                       | 0.00                        | 0.00                                                                                                          | 0.00              | 0.00                                    | 0.00                                                                        |                                            |                                           |                                                                                    |                                          |
| RMCSD WWRP                                                                                                              |                                                                  |            |                                                                                       |                                           |                       |                            |                                                                                       |                                            |                            |                             |                                                                                                               |                   |                                         |                                                                             |                                            |                                           |                                                                                    |                                          |
| WW Influent - Monthly-Daily Flow                                                                                        | %                                                                | 8%         | 8%                                                                                    | 10%                                       | 9%                    | 8%                         | 10%                                                                                   | 9%                                         | 8%                         | 8%                          | 8%                                                                                                            | 8%                | 7%                                      | 100%                                                                        |                                            |                                           |                                                                                    |                                          |
| # Days in Month                                                                                                         | days                                                             | 31         | 30                                                                                    | 31                                        | 31                    | 28                         | 31                                                                                    | 30                                         | 31                         | 30                          | 31                                                                                                            | 31                | 30                                      | 365                                                                         |                                            |                                           |                                                                                    |                                          |
| Wastewater Influent                                                                                                     | MG                                                               | 22.0       | 21.7                                                                                  | 26.7                                      | 24.5                  | 21.6                       | 27.4                                                                                  | 24.6                                       | 23.1                       | 21.4                        | 21.7                                                                                                          | 21.6              | 20.7                                    | 277.00                                                                      |                                            |                                           |                                                                                    |                                          |
| Wastewater Influent                                                                                                     | ac-ft                                                            | 67.6       | 66.6                                                                                  | 81.9                                      | 75.3                  | 66.3                       | 84.2                                                                                  | 75.3                                       | 71.0                       | 65.6                        | 66.6                                                                                                          | 66.3              | 63.4                                    | 850.08 884.5976                                                             |                                            |                                           |                                                                                    |                                          |
| 100-YR I/I Estimate                                                                                                     | ac-ft                                                            |            |                                                                                       |                                           |                       |                            |                                                                                       |                                            |                            |                             |                                                                                                               |                   |                                         |                                                                             |                                            |                                           |                                                                                    |                                          |
| Average-YR I/I Estimate                                                                                                 | ac-ft                                                            | 2.7        | 2.7                                                                                   | 3.3                                       | 3.1                   | 2.7                        | 3.4                                                                                   | 3.1                                        | 2.9                        | 2.7                         | 2.7                                                                                                           | 2.7               | 2.6                                     | 34.52                                                                       |                                            |                                           |                                                                                    |                                          |
| and Run-on<br>Pond Precipitation (direct)                                                                               | ac-n<br>ac-ft                                                    | 1.1        | 2.8                                                                                   | 2.7                                       | 3.b<br>4.0            | 3.5                        | 3.5                                                                                   | 1.5                                        | 0.4                        | 0.2                         | 0.1                                                                                                           | 0.1               | 0.4                                     | 19.75                                                                       |                                            |                                           |                                                                                    |                                          |
| Pond Evaporation                                                                                                        | ac-ft                                                            | -3.3       | -1.4                                                                                  | -0.8                                      | -0.6                  | -1.3                       | -2.3                                                                                  | -3.5                                       | -5.4                       | -6.6                        | -7.4                                                                                                          | -6.6              | -5.0                                    | -44.26                                                                      |                                            |                                           |                                                                                    |                                          |
|                                                                                                                         |                                                                  |            |                                                                                       |                                           |                       |                            |                                                                                       |                                            |                            |                             |                                                                                                               |                   |                                         |                                                                             |                                            |                                           |                                                                                    |                                          |
| RMCSD Secondary Storage Reservoirs                                                                                      | 6                                                                | F0.0       | 70.0                                                                                  | 450.2                                     | 224.0                 | 220.1                      | 205.2                                                                                 | 470.7                                      | 546.0                      | 405 1                       | 207.0                                                                                                         | 227.0             |                                         | 2454.20                                                                     |                                            |                                           |                                                                                    |                                          |
| Keservoir # 1 Vol<br>Reservoir # 1 Denth                                                                                | ac-rt<br>ft                                                      | 52.8       | /9.9                                                                                  | 150.3                                     | 234.9                 | 320.4                      | 395.2                                                                                 | 4/9./                                      | 518.8                      | 496.1                       | 387.8<br>22 5                                                                                                 | 227.9             | 110.5                                   | 3454.28                                                                     |                                            |                                           |                                                                                    |                                          |
| Reservoir # 1 Surface Area                                                                                              | acre                                                             | 0.2        | 7.8<br>19.4                                                                           | 20.8                                      | 20.5                  | 20.0                       | 23.0                                                                                  | 27.1                                       | 20.5                       | 27.7                        | 23.3                                                                                                          | 22.2              | 9.7                                     | 215.45                                                                      |                                            |                                           |                                                                                    |                                          |
| Reservoir #2 Vol                                                                                                        | ac-ft                                                            | 12.4       | 18.7                                                                                  | 35.3                                      | 55.1                  | 75.2                       | 92.7                                                                                  | 112.5                                      | 121.7                      | 116.4                       | 91.0                                                                                                          | 53.4              | 25.9                                    | 810.26                                                                      |                                            |                                           |                                                                                    |                                          |
| Reservoir # 2 Depth                                                                                                     | ft                                                               | 4.7        | 6.4                                                                                   | 10.7                                      | 15.3                  | 19.6                       | 22.9                                                                                  | 26.2                                       | 27.5                       | 26.8                        | 22.6                                                                                                          | 15.0              | 8.3                                     | 205.93                                                                      |                                            |                                           |                                                                                    |                                          |
| Reservoir # 2 Surface Area                                                                                              | acre                                                             | 3.4        | 3.7                                                                                   | 4.3                                       | 4.9                   | 5.5                        | 6.0                                                                                   | 6.4                                        | 6.6                        | 6.5                         | 5.9                                                                                                           | 4.9               | 3.9                                     | 61.88                                                                       |                                            |                                           |                                                                                    |                                          |
| Total Water Surface Area                                                                                                | acre                                                             | 22.2       | 23.0                                                                                  | 25.0                                      | 27.2                  | 29.2                       | 30.8                                                                                  | 32.3                                       | 33.0                       | 32.6                        | 30.6                                                                                                          | 27.0              | 23.9                                    | 336.89                                                                      |                                            |                                           |                                                                                    |                                          |
| Contributing water Sned Area                                                                                            | acre<br>ac-ft                                                    | 17.8       | 17.0                                                                                  | 15.0                                      | 12.8                  | 10.8                       | 9.2                                                                                   | 1.7                                        | 7.0                        | 7.4                         | 9.4                                                                                                           | 13.0              | 16.1                                    | 143.11                                                                      |                                            |                                           |                                                                                    |                                          |
| Reservoir Precip (direct)                                                                                               | ac-it<br>ac-ft                                                   | 2.4        | 4.4                                                                                   | 3.8<br>7.1                                | 4.5                   | 3.5<br>10.6                | 3.0                                                                                   | 5.0                                        | 0.3                        | 0.2                         | 0.1                                                                                                           | 0.1               | 0.9                                     | 22.99                                                                       |                                            |                                           |                                                                                    |                                          |
| Reservoir Evaporation                                                                                                   | ac-ft                                                            | -6.8       | -3.0                                                                                  | -2.0                                      | -1.6                  | -3.5                       | -6.7                                                                                  | -10.5                                      | -16.6                      | -20.2                       | -21.3                                                                                                         | -16.8             | -11.1                                   | -119.96                                                                     |                                            |                                           |                                                                                    |                                          |
|                                                                                                                         |                                                                  |            |                                                                                       |                                           |                       |                            |                                                                                       |                                            |                            |                             |                                                                                                               |                   |                                         |                                                                             |                                            |                                           |                                                                                    |                                          |
| RMCC Irrigation Lakes                                                                                                   | as ft                                                            | 0.4        |                                                                                       |                                           | 0.5                   | 0.5                        | 0.5                                                                                   | 0.2                                        |                            |                             | 0.0                                                                                                           | 0.0               | 0.1                                     | 0.74                                                                        |                                            |                                           |                                                                                    |                                          |
| Lake Water Shed Run-off                                                                                                 | ac-tt                                                            | 0.1        | 0.4                                                                                   | 0.4                                       | 0.5                   | 0.5                        | 0.5                                                                                   | 0.2                                        | 0.1                        | 0.0                         | 0.0                                                                                                           | 0.0               | 0.1                                     | 2.74                                                                        |                                            |                                           |                                                                                    |                                          |
| Irrig. Lake Evaporation                                                                                                 | ac-n<br>ac-ft                                                    | -3.4       | -1.4                                                                                  | 5.8<br>-0.9                               | -0.6                  | -1.3                       | -2.4                                                                                  | -3.7                                       | -5.7                       | -7.0                        | -7.8                                                                                                          | -7.0              | -5.2                                    | -46.49                                                                      |                                            |                                           |                                                                                    |                                          |
| • · · · · · · · · · · · · · · · · · · ·                                                                                 |                                                                  |            |                                                                                       |                                           |                       |                            |                                                                                       |                                            |                            |                             |                                                                                                               |                   |                                         |                                                                             |                                            |                                           |                                                                                    |                                          |
| upplemental Water                                                                                                       |                                                                  |            |                                                                                       |                                           |                       |                            |                                                                                       |                                            |                            |                             |                                                                                                               |                   |                                         |                                                                             |                                            |                                           |                                                                                    |                                          |
| Supplemental Water                                                                                                      | ac-ft                                                            | 0.0        | 0.0                                                                                   | 0.0                                       | 0.0                   | 0.0                        | 0.0                                                                                   | 0.0                                        | 0.0                        | 0.0                         | 0.0                                                                                                           | 0.0               | 0.0                                     | 0.00                                                                        |                                            |                                           |                                                                                    |                                          |
| Disposal                                                                                                                |                                                                  |            |                                                                                       |                                           |                       |                            |                                                                                       |                                            |                            |                             |                                                                                                               |                   |                                         |                                                                             |                                            |                                           |                                                                                    |                                          |
| RMCC Golf Course Demand                                                                                                 | ac-ft                                                            | -20.3      | 0.0                                                                                   | 0.0                                       | 0.0                   | 0.0                        | -0.8                                                                                  | -16.4                                      | -50.8                      | -111.4                      | -151.3                                                                                                        | -120.5            | -78.5                                   | -550.00                                                                     |                                            |                                           |                                                                                    |                                          |
| Residential Irrigation                                                                                                  | ac-ft                                                            | -10.7      | 0.0                                                                                   | 0.0                                       | 0.0                   | 0.0                        | -0.4                                                                                  | -8.6                                       | -26.8                      | -58.8                       | -79.8                                                                                                         | -63.6             | -41.4                                   | -290.00                                                                     |                                            |                                           |                                                                                    |                                          |
| Van Vleck Ranch Demand                                                                                                  | ac-ft                                                            | 0.0        | 0.0                                                                                   | 0.0                                       | 0.0                   | 0.0                        | 0.0                                                                                   | 0.0                                        | 0.0                        | 0.0                         | 0.0                                                                                                           | 0.0               | 0.0                                     | 0.00                                                                        |                                            |                                           |                                                                                    |                                          |
| Effluent Storage                                                                                                        |                                                                  |            |                                                                                       |                                           |                       |                            |                                                                                       |                                            |                            |                             |                                                                                                               |                   |                                         |                                                                             |                                            |                                           |                                                                                    |                                          |
| Beginning Water Volume in Res.                                                                                          | ac-ft                                                            | 65         | 98.7                                                                                  | 185.5                                     | 289.9                 | 395.6                      | 487.9                                                                                 | 592.2                                      | 640.4                      | 612.5                       | 478.8                                                                                                         | 281.3             | 136.5                                   | 4264.35                                                                     |                                            |                                           |                                                                                    |                                          |
| Change in Water Volume                                                                                                  | ac-ft                                                            | 33.7       | 86.9                                                                                  | 104.4                                     | 105.6                 | 92.3                       | 104.3                                                                                 | 48.3                                       | -27.9                      | -133.7                      | -197.5                                                                                                        | -144.9            | -72.3                                   | -0.82                                                                       |                                            |                                           |                                                                                    |                                          |
| Final Water Volume in Reservoirs                                                                                        | ac-ft                                                            | 98.7       | 185.5                                                                                 | 289.9                                     | 395.6                 | 487.9                      | 592.2                                                                                 | 640.4                                      | 612.5                      | 478.8                       | 281.3                                                                                                         | 136.5             | 64.2                                    | 4263.52                                                                     |                                            |                                           |                                                                                    |                                          |

|                        | 100     | Ave     |
|------------------------|---------|---------|
| Demand Info            |         |         |
| RMCC Demand            | 550 AFY | 550 AFY |
| /an Vleck Ranch        | 295 AFY | 0 AFY   |
| Residential Irrigation | 290 AFY | 290 AFY |
|                        | 1135    | 840     |



# **Rancho Murieta** Community Services District

# Stonehouse 12-inch Sewer Forcemain Condition Assessment



June 2017

# Stonehouse 12-inch Sewer Forcemain Condition Assessment

June 2017



Prepared under the responsible charge of:

Kevin Kennedy Registration No. C61206

# **Kennedy/Jenks Consultants**

10850 Gold Center Drive, Suite 350 Rancho Cordova, California 95670

## **Table of Contents**

| Executive Su | mmary                                                     | 1  |
|--------------|-----------------------------------------------------------|----|
| Section 1:   | Introduction and Purpose                                  | 1  |
| Section 2:   | Initial Assessment                                        | 3  |
| 2.1: Exi     | sting Conditions                                          | 3  |
| 2.2: Sur     | rounding Soils Parameters                                 | 3  |
| 2.3: Rec     | cycled Water Quality Analyses and Assumed Operation       | 4  |
| 2.4: Ope     | erational Parameters                                      | 4  |
| 2.4.1:       | Age                                                       | 4  |
| 2.4.2:       | Traffic Loads                                             | 5  |
| 2.4.3:       | Surge and Thrust                                          | 5  |
| 2.5: Hye     | draulic Modeling Results                                  | 5  |
| Section 3:   | Preliminary Risk Assessment                               | 9  |
| 3.1: Rec     | commended Assessment Plan                                 | 10 |
| Section 4:   | Stonehouse 12-inch Sewer Forcemain Condition Assessment   | 11 |
| 4.1: Hye     | drostatic Pressure Testing                                | 11 |
| 4.2: Pip     | e Material Testing                                        | 12 |
| 4.2.1:       | Phenolphthalein Dye Testing                               | 13 |
| 4.2.2:       | Shore Durometer                                           | 13 |
| 4.2.3:       | Scratch Test                                              | 14 |
| Section 5:   | Stonehouse 12-inch Sewer Forcemain Useful Life Estimation | 15 |
| 5.1: Rer     | naining Useful Life Estimation                            | 15 |
| Section 6:   | Stonehouse 12-inch Sewer Forcemain Rehabilitation Plan    | 19 |
| 6.1: Alt     | ernative 1. pH Control and/or Alkalinity Addition         | 19 |
| 6.2: Alt     | ernative 2. Non-Structural Reinforcement                  | 19 |
| 6.3: Alt     | ernative 3. Structural Reinforcement                      | 19 |
| 6.4: Cos     | t Comparison and Recommended Alternative                  | 20 |
| References   |                                                           |    |

#### List of Tables

| Table 1. | Stonehouse 12-inch Sewer Forcemain Risk Assessment Worksheet                | 9  |
|----------|-----------------------------------------------------------------------------|----|
| Table 2. | Risk Assessment Score Sheet                                                 | 10 |
| Table 3. | Pipe Hardness Measurements in Shore D across the Thickness of the Pipe Wall | 14 |
| Table 4. | Residual Life Factor - Estimated Useful Life                                | 17 |
| Table 5. | Comparison of Alternatives <sup>a</sup>                                     | 20 |

#### List of Figures

| Figure 1. | Normalized Burst Rate                                           | . 5 |
|-----------|-----------------------------------------------------------------|-----|
| Figure 2. | Proposed Buildout Recycled Water System and Estimated Pressures | . 7 |
| Figure 3. | Estimated Pipeline Lengths between Nodes                        | . 8 |
| Figure 4. | Phenolphthalein Dye Test Results                                | 13  |
| Figure 5. | Leak Rates Pre and Post 1950 AC Design Standard Change          | 16  |

#### Appendix

#### **Executive Summary**

The objective of this condition assessment is to analyze the existing Stonehouse 12-inch sewer forcemain, which runs from Murieta Drive to Stonehouse Park, and identify the most cost effective way it can be leveraged to convey recycled water to the Stonehouse and Escuela Parks and Residences of Murieta Hills. Historical information and records were reviewed along with recycled water quality analysis, projected operational parameters and other information provided by the Rancho Murieta Community Services District (District).

A risk assessment was conducted to determine the appropriate level of condition assessment to conduct. Assessment results place the Stonehouse 12-inch sewer forcemain in the High Risk Level, which results in recommending a proactive and detailed assessment, including systematic pipe testing. The high risk level assignment was due to the recycled water being considered highly aggressive. Even though the Stonehouse 12-inch sewer forcemain has not been put into service, and has not conveyed recycled water, Phenolphthalein dye test, Shore D and other tests indicate significant wear and reduced useful life. The estimated remaining useful life of the Stonehouse 12-inch sewer forcemain is about 19 years based on specific and assumed service conditions as compared to about 50 to 70 years for a new asbestos cement (AC) forcemain.

A comparison of potential corrosion management alternatives indicated that chemical addition (pH and/or alkalinity addition) is the lowest cost alternative and is thus recommended. Other alternatives considered included non-structural liners and/or forcemain replacement. Results and recommendations described in this report will be incorporated into the District's Recycled Water Program Preliminary Design Report (Final, anticipated June 2017).

#### THIS PAGE INTENTIONALLY BLANK

## Section 1: Introduction and Purpose

Recent developer-submitted sewer studies for The Retreats, Murieta Gardens and Rancho Murieta North, coupled with development timelines described in the Board of Director's approved Water Supply Assessment Technical Memorandum (RMCSD, 2016d), indicate that the Rancho Murieta Community Services District's (District's) recycled water disposal capacity is projected to be exceeded in 2019. In accordance with the District's Recycled Water Standards (RMCSD, 2013), beneficial reuse of recycled water via irrigation at Stonehouse and Escuela Parks, The Retreats, Murieta Gardens, the Residences of Murieta Hills and other future developments are required to accommodate projected future wastewater flows associated with proposed future development within Rancho Murieta.

The key objective of this effort is to conduct a sufficient level of condition assessment of the Stonehouse 12-inch sewer forcemain to determine the most cost effective way to use this asset to convey recycled water to specific recycled water use areas in the near future. Preliminary cost estimates indicate construction and program costs associated with the installation of a new 12-inch diameter pipeline, similar to the Stonehouse 12-inch sewer forcemain and Highway 16 undercrossing, is expected to be about \$1.7 and 2.3 million, respectively. Costs associated with delivery of recycled water to Stonehouse and Escuela Parks and North Main Gate Entrance could be significantly reduced if the Stonehouse 12-inch sewer forcemain condition assessment finds that it is capable of conveying recycled water and has significant remaining useable life. Results and recommendations described in this report will be incorporated into the District's final Recycled Water Program Preliminary Design Report (PDR) which is anticipated to be completed in July 2017.

#### THIS PAGE INTENTIONALLY BLANK

## Section 2: Initial Assessment

#### 2.1: Existing Conditions

Historical information and record drawings provided by the District were reviewed. Key data pertaining to the Stonehouse 12-inch sewer forcemain are summarized below<sup>1</sup>:

- *Age, Material, Pressure Class, and Standard* Installed in 1973 and estimated to be about 43 years old. Material and pressure class were obtained from record drawings, which indicate the forcemain is pressure Class 150, Type II Asbestos Cement (AC) Pipe conforming to ASTM C-296 Standard.
- *Operating Conditions* Operated from date of installation through 1982 and then abandoned in place.
- **Operating Requirements** see hydraulic model described later in this section. Model was revised<sup>2</sup> to support this condition assessment and has been used to estimate future pressure and flow requirements necessary to satisfy future Buildout demands.
- *Maintenance History* There are no known repairs on this forcemain or records besides the record drawings.
- *Plans* The following information helped to define the parameters by which the analysis was performed:
  - Murieta Drive Sewer Lift Station and Force Main Plan Set (RMCSD, 1973)
  - North Golf Course Irrigation System Map (RMCSD, 2016c)
  - El Dorado Irrigation District (EID) plans for sewer force main along Stonehouse Road (RMCSD, 1980)
  - District Service Area Map (RMCSD, 2016b)
  - RMCSD Service Area Buildout Map (RMCSD, 2016a)

### 2.2: Surrounding Soils Parameters

Soil aggressiveness is measured in terms of pH and corrosivity. Aggressive soils (pH  $\leq$  5.5) can cause leaching of the Portland cement from the pipe exterior, and deterioration of AC pipes. California Laboratory Services (CLS) conducted laboratory testing of the soils adjacent to the Stonehouse 12-inch sewer forcemain. Data obtained from the tests was used to establish the risk of chemical attack that can lead to leaching of calcium from the pipes outer walls. The preliminary risk analysis can be found in Table 1 (presented in Section 3).

Laboratory test results from soil samples taken by the District on December 16, 2016 indicate that soil adjacent to the Stonehouse 12-inch sewer forcemain has a pH of approximately 5.9 standard units and a specific conductance of 12  $\mu$ mhos/cm. It rained on December 15, 2016, which could have impacted the laboratory results. Moisture content is the largest contributing factor in soil corrosivity, as water is the conductor to mobilize sulfides and sulfates in the soil. Corrosion (degeneration of pipe wall) does not occur if the soil is completely dry (Arbabi, 2017). The laboratory report is included in the Appendix for reference.

<sup>&</sup>lt;sup>1</sup> Analysis of the key data is presented in the following section

<sup>&</sup>lt;sup>2</sup> K/J's scope was limited to review, however, K/J had to significantly modify the hydraulic model at their expense to describe Buildout conditions.

#### 2.3: Recycled Water Quality Analyses and Assumed Operation

Another potential corrosion factor affecting AC pipe is water quality, specifically its aggressiveness. All aggressive water will leach mortar from the pipe wall. Water aggressiveness can be measured in terms of the Langelier Index (LI) or the aggressive index (AI). Waters with a LI of less than -2.0 or an AI of less than 10.0 are considered highly aggressive. Both indices are used to indicate the degree of saturation of calcium carbonate in water. For this application, indices represent the District's recycled water's ability to dissolve or deposit calcium carbonate from existing concrete structures (including mortar from AC pipe), and are often used as an indicator of corrosivity. Calcium carbonate can be calculated using pH, alkalinity and calcium concentration. Recycled water quality testing was performed by CLS; results are included in Table 1 (presented in Section 3). Recycled water quality results are also part of the analysis used to estimate remaining useful life calculations described in Section 4.

The District sent a recycled water sample to CLS on September 2, 2016. Results indicate elevated levels of bicarbonate and a resulting LI value of -2.41. The quality of the District's recycled water is considered highly aggressive. The laboratory report is included in the Appendix for reference.

The Stonehouse 12-inch sewer forcemain has never been used to convey recycled water and is currently not in operation. When, and if it is used to convey recycled water, it will be subjected to the recycled water quality at that time. Analysis results in Table 1 and Table 2 and useful life estimations (described later in this report) assume that recycled water is being conveyed through the Stonehouse 12-inch sewer forcemain. It is understood and recognized that this situation does not reflect existing conditions. However, if the analysis was to assume existing conditions (no flow), the results and useful life estimations would become out date and require modification when recycled water was first conveyed through the pipeline.

#### 2.4: **Operational Parameters**

To help define conditions of both external and internal physical impacts , which create degradative conditions that could affect the useful structural life of the Stonehouse 12-inch sewer forcemain, this section considers items associated with pipe age, traffic loading, pressure and water surge and thrust. Based on historical data and record drawings, the known risks which could be assigned to the pipe are pipe age and traffic loads at specific, limited locations (i.e., Highway 16). Analysis of these items will help further define potential rehabilitation methods.

#### 2.4.1: Age

The pipe was constructed in 1973. Increased age, in general, has a direct correlation with AC pipe failure, and therefore should be taken into account as a relevant consideration. A normalized burst rate (NBR) has been observed in the industry with increased pipe age. Figure 1 illustrates the State of Washington's NBR per pipe installation year (D. Wang, 2012). As shown, AC pipes over 50 years of age show significant increase in failure rate partially due to age and partially due to a lower standard of care during manufacturing. The Stonehouse 12-inch sewer forcemain is estimated to be 43 years old.




## 2.4.2: Traffic Loads

The Stonehouse 12-inch sewer forcemain is located within a 24-inch steel casing, a minimum of 3.5 to 5.5 ft. below Highway 16. Traffic loads can be problematic for pipes buried beneath roadway surfaces, depending on several factors. Water mains buried less than 4.5 feet below the surface of a road with high volumes of traffic and heavy trucks can have a significantly increased likelihood of failure (Y.Hu, 2013). The majority of the Stonehouse 12-inch sewer forcemain is not located beneath roadways; rather it is located along undeveloped lands located between Stonehouse Road and existing homes. However, as indicated in Figure 2, there is an existing undercrossing beneath Highway 16 (Jackson Highway). The initial risk assessment has determined that because the existing pipe crosses beneath a busy thoroughfare with moderate to heavy traffic volume, the risk category rating for this item is considered moderate.

## 2.4.3: Surge and Thrust

Other risks involve the design, construction and operation of the Stonehouse 12-inch sewer forcemain and the associated pumping surge and thrust forces created during operations. These risks can be mitigated through proper design and analysis through the application of soft start pumping systems and surge protection valves or tanks. It has been assumed that these and other current best practices will be applied during the design process to mitigate surge or thrust impacts, therefore this risk factor has been deemed moderate until system has been in operation and proven to be low.

## 2.5: Hydraulic Modeling Results

A hydraulic model of the proposed Buildout recycled water system (which includes the Stonehouse 12-inch sewer forcemain) was created using the Bentley WaterGEMS v8i platform. The model can operate as a stand-alone application or from within ArcGIS, AutoCAD and MicroStation. Figure 2 and Figure 3 show the proposed configuration of the Buildout recycled water system, as well as the location of the Stonehouse 12-inch sewer forcemain location relative to other components of the proposed recycled water system. Figures 2 and 3 reflect Buildout conditions and an 8-hour urban irrigation period.

The model was created to estimate hydraulic gradelines and operating pressures for Buildout conditions and is not configured to reflect Phase 1 (see Figures 2 and 3) conditions. Estimated operating pressures to satisfy projected urban (non-golf course) recycled water demands are shown in Figure 2. Estimated lengths of pipe between nodes as estimated by the hydraulic model are shown in Figure 3.



Figure 2. Proposed Buildout Recycled Water System and Estimated Pressures



Figure 3. Estimated Pipeline Lengths between Nodes

## Section 3: Preliminary Risk Assessment

For the purposes of this assessment, risk has been defined as the product of the probability of an event occurring multiplied by the consequence of that event. A preliminary risk assessment was conducted to determine the appropriate level of condition assessment to conduct.

AC pipes can deteriorate from a variety of physical, operational and environmental factors. Physical factors include material, thickness and age; operational factors include pressure, flow, maintenance and conveyed water quality; and environmental factors include surrounding soil, traffic loads and groundwater and conveyed fluid quality. The criteria and scoring system used to perform the preliminary risk assessment for the Stonehouse 12-inch sewer forcemain were developed using the Guidance Manual for Managing Long Term Performance of Asbestos Cement Pipe (Y.Hu, 2013). Preliminary risk assessment results and assigned scores are shown in red font in Table 1 and Table 2.

|    |                                       | А                          | В                             |       | С                                     |      | D                                  |       | Е      | F        | G                      |
|----|---------------------------------------|----------------------------|-------------------------------|-------|---------------------------------------|------|------------------------------------|-------|--------|----------|------------------------|
| 1  |                                       |                            | Con                           | trib  | ution to deterior                     | atio | <u>n or pipe l</u> oa              | ding  |        | Woightod |                        |
| 1  | Risks                                 |                            | Low (0.2)                     |       | Moderate (0.5)                        |      | High<br>(0.8)                      |       | Weight | Score    | Notes                  |
| 2  | Type 1 AC j                           | pipe?                      | No 🗸                          | 0.2   |                                       |      | Yes                                |       | 0.5    | 0.1      | As Builts              |
| 3  | Pipe age                              |                            | < 40                          |       | <u>&gt;</u> 40, < 60 ✓                | 0.5  | <u>&gt;</u> 60                     |       | 0.8    | 0.4      | 43 years               |
| 4  | Soil pH or v                          | wetlands or                | pH > 6.3                      |       | 5.5 < pH <u>&lt;</u> 6.3✓             | 0.5  | рН <u>&lt;</u> 5.5                 |       | 0.0    | 0.4      | Lab Dogulta            |
| 4  | contaminat                            | ted soil                   | No 🗸                          |       |                                       |      | Yes                                |       | 0.8    | 0.4      | Lab Results            |
| 5  | Soil sulfate<br>soil pH <u>&gt;</u> 7 | (in mg/L) with             | < 1000                        |       | <u>&gt;</u> 1000,<br>< 5000           |      | <u>&lt;</u> 5000                   |       | 0.4    | NA       | Lab Results            |
| 6  |                                       | CaCO <sub>3</sub>          | LI > 0                        |       | -2.0 <u>&lt;</u> LI <u>&lt;</u> 0     |      | LI < -2.0 ✓                        | 0.8   |        |          | -2.41                  |
| 7  | Conveyed                              | Concentration*             | AI > 12                       |       | 10 < AI < 12                          |      | AI < 10 ✓                          | 0.8   | 1      | 0.8      | 9.18                   |
| 8  | quality                               | Hardness*<br>(mg/L)        |                               |       |                                       |      | < 100 🗸                            | 0.8   | 1      |          | 40                     |
| 9  |                                       | Alkalinity*<br>(mg/L)      |                               |       |                                       |      | < 60 🗸                             | 0.8   |        |          | 6                      |
| 10 |                                       | DoB** < 1.5m               | Light traffic                 | 0.2   | Heavy trucks                          |      | High<br>volumes                    |       | 0.2    | 0.04     |                        |
| 11 | Traffic<br>loading                    | DoB** ≥ 1.5m               | Light traffic<br>✓            | 0.2   | High volumes                          |      | High<br>volume,<br>heavy<br>trucks |       | 0.2    | 0.04     |                        |
| 12 | Frost pene                            | tration                    | Frost<br>depth/DoB<br>< 0.5 ✓ | 0.2   | 0.5 <u>&lt;</u> frost<br>depth/DoB <1 |      | History of<br>frozen<br>pipes      |       | 0.2    | 0.04     |                        |
| 13 | Working pi                            | ressures*                  | Balanced                      |       | Moderate<br>differences ✓             | 0.5  | Large<br>differences               |       | 0.5    | 0.25     | (Est.) Model           |
| 14 | Pressure fl                           | uctuations*                | Few, slight                   |       | Some,<br>moderate ✔                   | 0.5  | Many,<br>severe                    |       | 1      | 0.5      | (Est.) Model           |
| 15 | Softening o wall in any               | f external pipe<br>AC pipe | No                            |       |                                       |      | Yes 🗸                              | 0.8   | 0.8    | 0.64     | Lab Results            |
| 16 | Network fa<br>Breaks/10               | ilure rate<br>0 km/Year    | < 41                          | 0.2   | 4 <u>&lt;</u> rate < 10               |      | <u>&gt;</u> 10                     |       | 1      | 0.20     | Assumed<br>Unavailable |
|    | - Assumed                             | l / Est.                   | 🗖 - Te                        | estec | l / Measured                          |      | 17 To                              | tal S | core   | 3.41     |                        |

Table 1. Stonehouse 12-inch Sewer Forcemain Risk Assessment Worksheet

Table 2. Risk Assessment Score Sheet

| Total Score                                                                                                             | <b>Risk Profile</b> | Recommended Action Plan                                                 |
|-------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------|
| 0 to 3                                                                                                                  | Low                 | No immediate action required, reevaluate<br>in 5 years                  |
| <mark>3 to 5</mark><br>or any contributions in the High column by<br>factors with a weight of 0.4 or 0.5                | Moderate            | More frequently monitoring, including opportunistic pipe testing        |
| 5 to 6<br><u>or</u> any contributions in the High column<br>that are multiplied by factors with a<br>Weight of 0.8 or 1 | High                | Proactive and detailed assessment,<br>including systematic pipe testing |

To multiply the probability of risk by the consequence of the event, a risk scoring system was used. To use the risk scoring system:

- Risks (column A) are assigned a level of probability; either high, moderate or low (columns B, C or D, respectively) based on risks listed.
- Each level of probable risk is assigned a value: high = 0.8, moderate = 0.5, and low = 0.2.
  A pipe age of 43 years (row 3, column C) scores 0.5 for moderate risk.
- The score for probability of risk is multiplied by the assigned weight (magnitude of consequence) for that risk.
  - For a pipe of 43 years, moderate risk [column C] = 0.5, and weight (row 3, column E)
    = 0.8. The weighted score [row 3, column F] = 0.5 X 0.8 = 0.4
- Individual weighted scores (column F) are summed to find the total score = 3.41 (row 17, column F).

For some risks there is more than one consideration. Row 4 for example considers soil pH, wetlands and contaminated soil; rows 6, 7, 8, and 9 consider conveyed water quality; and rows 10 and 11 consider traffic loading. Although multiple factors are considered, the weighted score is calculated one time using the highest score. For example, conveyed water quality can be measured 4 different ways (Rows 6, 7, 8, and 9); however, only a single score, representing a relatively high level of probable risk, 0.8, is applied to the total score.

Once all weighted scores are calculated and summed, the total score is used to find the risk profile and recommended action plan using Table 2. The preliminary risk assessment results indicate a total score in the range between 3 and 4 (i.e., 3.41). As indicated in Table 2, scores for conveyed water quality (Row 6-9) govern the recommended action plan and the preliminary risk assessment places the existing Stonehouse 12-inch sewer forcemain into the high risk profile and recommends a proactive and detailed assessment, including systematic pipe testing.

### 3.1: Recommended Assessment Plan

Preliminary risk assessment results indicate that the Stonehouse 12-inch sewer forcemain falls within the moderate range of 'Likelihood of Failure' based solely upon the risk assessment worksheet weighted score. However, because of the aggressive recycled water quality (Table 1, rows 6, 7, 8 and 9), and resulting high weighted score specific to water quality as indicated in Table 2, the Stonehouse 12-inch sewer forcemain is elevated into the high range of 'Likelihood of Failure'. Therefore, the recommended action plan is for a "Proactive and detailed assessment of the pipe", which coincides with the pipeline rehabilitation plan currently underway.

## Section 4: Stonehouse 12-inch Sewer Forcemain Condition Assessment

The District conducted field work to gather information directly from the Stonehouse 12-inch sewer forcemain and the surrounding soils through sampling, physical inspection, and/or cutting a segment from the Stonehouse 12-inch sewer forcemain. Three cut segments were sent to a laboratory for mechanical and chemical testing (two from the forcemain along Jackson Highway and one from the forcemain going to Stonehouse Road). Information and data gathered from the field, and test results received from the lab were analyzed to provide remaining useful life calculations and develop rehabilitation recommendations.

## 4.1: Hydrostatic Pressure Testing<sup>3</sup>

Hydrostatic pressure testing typically involves filling and applying a predetermined amount of water pressure to the Stonehouse forcemain to help define pressure capacity and identify potential leak locations (if present). It has been reported that testing included cutting into the Stonehouse forcemain (near its northern end along Stonehouse Road) and obtaining a segment (sample), sealing and capping the Stonehouse forcemain and installing fill and drain ports at the ends. The District was asked to locate air release valves along the forcemain and verify their operational condition.

Review of the Buildout hydraulic model (see Figure 2 results) indicated that the projected operating pressure at the lowest point of the existing Stonehouse 12-inch sewer forcemain (where the highest pipeline pressure was expected to occur) was about 95 psi. AWWA C600 guidelines recommend testing at a minimum of 1.25 times the operating pressure and monitoring and holding this pressure for 2 hours (minimum). Actual hydrostatic pressure measured at the lowest pipeline elevation was 160 psi or 1.68 times the anticipated operating pressure. This pressure was held for 2 hours; only a 2 psi decrease was measured during the 2 hours. A pressure measurement of 124 psi was also recorded in the forcemain during testing along Stonehouse Drive near its highest elevation. This test was deemed a passing pressure test.

AWWA C600 guidelines were followed for pressure testing of the Stonehouse 12-inch sewer forcemain. To prepare for the test, District staff located, exposed, cut, and capped the bottom and top portions of the Stonehouse forcemain, where future connections would assume to be near. The top section is at approximately half way up the east side of Stonehouse Park and the bottom section on the west side of the Laguna Joaquin drainage ditch below Lookout Hill. The bottom and top of the pipeline caps were installed with ports for filling and air relief, gauges for pressure monitoring, and then set with a sand slurry concrete mix to hold them in place but allow for future removal. An air relief valve along this run of pipe was found to not be operating properly and was then isolated via an existing valve for the pressure testing. After District staff performed cursory low pressure testing of the pipe and found it to hold pressure they brought in contractor JD Pasquetti.

<sup>&</sup>lt;sup>3</sup> Information provided by District.



Photo of Stonehouse 12-inch sewer forcemain pipeline



Photo of pressurization of line for integrity test

## 4.2: Pipe Material Testing

The District sent three samples of the Stonehouse 12-inch sewer forcemain to MEIC-Charlton, Inc. for laboratory testing. Phenolphthalein dye, scratch and hardness tests were performed to determine the AC pipe's physical and chemical properties. Copies of laboratory sampling results are attached in the Appendix.

## 4.2.1: Phenolphthalein Dye Testing

Phenolphthalein dye testing is a chemical analysis process in which a pH indicator (dye) is applied over the thickness of a pipe wall to estimate remaining structural thickness. Aggressive water<sup>4</sup> causes calcium to leach out of cement, resulting in softness of the AC pipe walls. The Phenolphthalein dye test indicates pH, turning pink if the cement remains basic (pH>7). The pink indicates the presence of calcium, and the thickness of pink is measured and used to estimate the remaining structural thickness of the AC pipe.

The three pipe pieces sent from the District to the laboratory were stained using Phenolphthalein dye. Results are generally consistent between all three samples. Figure 4 is a picture of a sample after it has been dyed with phenolphthalein. Of the original 1-inch wall thickness, approximately 0.5-inch of structural thickness remains (50%). White areas show the loss of alkalinity from the AC pipe structure. Additional pictures are included in the Appendix for reference.



Figure 4. Phenolphthalein Dye Test Results

## 4.2.2: Shore Durometer

The Shore Durometer (Shore D) is an instrument that uses pressure to measure hardness. The instrument is firmly pressed against the AC pipe and the gauge uses a spring-loaded needle to measure resistance. Shore D results range from 0 to 100, 100 being the hardest. A typical Shore D measurement for a new (unused) Type II AC pipe is approximately 90 (EPA, 1985).

For each of the 3 samples, hardness was measured in Shore D units at 6 locations along the length of the wall at the:

- outside pipe surface;
- inside pipe surface; and

across the thickness of the wall at the:

- inner side;
- middle; and
- outer side.



 $^{4}$ Aggressive Risk (AI) < 10 (AI is calculated from water pH, Alkalinity (mg/LCaCo<sub>3</sub>) and Hardness (mg/L CaCo<sub>3</sub>) with the formula AI = pH + Alkalinity + Hardness).

Shore D tests results measured across the thickness of each of the three samples are summarized in Table 3. The remaining Shore D test results and pictures are attached to the Appendix for reference.

|          | •     | Sample 1 |       |       | Sample 2 |       | Sample 3 |        |       |  |  |  |
|----------|-------|----------|-------|-------|----------|-------|----------|--------|-------|--|--|--|
| Location | Inner | Middle   | Outer | Inner | Middle   | Outer | Inner    | Middle | Outer |  |  |  |
| 1        | 52    | 89       | 65    | 50    | 88       | 68    | 62       | 89     | 71    |  |  |  |
| 2        | 60    | 90       | 68    | 51    | 89       | 71    | 62       | 88     | 72    |  |  |  |
| 3        | 58    | 88       | 70    | 46    | 90       | 71    | 63       | 90     | 80    |  |  |  |
| 4        | 61    | 88       | 71    | 51    | 91       | 70    | 61       | 88     | 68    |  |  |  |
| 5        | 63    | 91       | 68    | 52    | 88       | 72    | 61       | 90     | 70    |  |  |  |
| 6        | 61    | 88       | 78    | 48    | 90       | 70    | 60       | 90     | 70    |  |  |  |
| Average  | 59    | 89       | 70    | 50    | 89       | 70    | 62       | 89     | 72    |  |  |  |

Table 3. Pipe Hardness Measurements in Shore D across the Thickness of the Pipe Wall

The inner wall of the pipe showed lower hardness values as compared to the outer wall in all three cases. The middle wall showed higher hardness than either the inner or the outer wall in all three cases. The inner, outer, and middle wall hardness was consistent between the three samples.

## 4.2.3: Scratch Test

A scratch test was performed by using a small splinter cut out of a hard plastic piece that was 1/8 inch thick and 4 inch long. The tip of the piece was tapered into a needle shape. The plastic needle tip was firmly placed on the surface to be tested and slowly moved in a straight line (at an angle of 45-75 degree) under constant pressure during the travel. Resistance to the motion was assessed as soft, medium and hard. Scratch tests on the outer surface of the sample revealed medium to hard scratch in all three cases. Inner surface of the pipe pieces was found to be softer than the outer surface.

## Section 5: Stonehouse 12-inch Sewer Forcemain Useful Life Estimation

## 5.1: Remaining Useful Life Estimation

The remaining useful life (RUL) is an opinion of the estimated number of years the Stonehouse 12inch sewer forcemain will continue to operate without failing under the anticipated service conditions. The method used to determine the RUL is based on concepts developed by the United States Environmental Protection Agency (USEPA), and follows a 6-step approach:

- 1) Determine Asset Age
- 2) Identify Base Effective Life
- 3) Determine Adjusted Effective Life
- 4) Determine Effective Remaining Life
- 5) Identify Residual Life Factor
- 6) Calculated Remaining Useful Life

*Step 1. Determine Asset Age:* The Stonehouse 12-inch sewer forcemain was constructed in 1973; the age of the asset (Step 1) is approximately 43 years.

*Step 2. Identify Base Effective Life:* The Chrysotile Institute (chrysotile asbestos fibres are added to Portland cement to construct AC pipes) estimates the base effective life (Step 2) of an AC pipe to be 70 years (Exponent, 2016).

*Step 3. Determine Adjusted Effective Life:* The adjusted effective life is equal to the base effective life multiplied by an adjustment factor (0.8 to 1.4). The adjustment factor increases/decreases according to (a) the design standards in place at the time of construction, (b) apparent quality of construction or (c) installation and general operational environment.

a) Design Standards : Pressure Class 150, Type II Asbestos Cement (AC) Pipe conforming to ASTM C-296 Standard.

ASTM Standard C-296 was originally approved in 1952, prior to the construction of the Stonehouse 12-inch sewer forcemain. The current version was reapproved in 2009. The standard covers asbestos-cement pipes used to carry water or sewage under pressure and addresses: material, manufacture, seals, hydrostatic strength, flexural strength, crushing strength, chemical requirements, sampling, sizes and dimensions, workmanship and finish, marking and shipping, and inspection and rejection. Figure 5 is from a study conducted by East Bay Mud Utilities District (EBMUD, 2013). Design standards changed around 1950, and the leak rate significantly decreased. The adjustment factor for 3(a), determine adjusted effective life, is 1.4.



Figure 5. Leak Rates Pre and Post 1950 AC Design Standard Change

b) Laboratory results indicate uniform shape, hardness, and structural integrity.

The Stonehouse 12-inch sewer forcemain appears to be in good condition. Structural thickness and hardness are uniform across the three samples. However, there have been no recent improvements to the forcemain, and data is limited to existing conditions (there is no historical evidence to illustrate trends in performance/condition). The adjustment factor for 3(b) is 1.0.

c) The general operational environment is poor. The surrounding soil and conveyed water quality (future) have a low pH, which is aggressive and causes cement to corrode.

The operational environment is considered poor because of the surrounding soil and the quality of water to be conveyed in the future. Laboratory results indicate the soil has a pH of 5.91, and a pH of less than 5.5 is considered aggressive. It rained the day before the samples were collected, which may have decreased the pH, however cement leaching from the outside of the pipe as indicated in Figure 4 is a good indication of the corrosivity of the surrounding soils. The adjustment factor for 3(c) is (0.8).

The arithmetic average of the adjustment factors for (a = 1.4), (b = 1.0) and (c = 0.8) is equal to 1.1. Therefore, the adjusted effective life is =  $70 \times (1.1) = 77$ .

*Step 4. Determine Effective Remaining Life:* The effective remaining life is equal to the adjusted effective life minus the pipe age. The effective remaining life is = 77 - 43 = 34.

*Step 5. Identify Residual Life Factor:* The residual life factor is a grading system ranging from very good to very poor. Laboratory test results and data collected in the field were used to determine the residual life factor. The pipe was assigned a grade for structural integrity and a grade for environment. Considering the consistency and thickness of structural soundness and the relative

hardness of the pipe, the pipe was given a score of good for structural integrity. This is considered conservative; testing more frequently, in terms of both space and time, could improve the grade for structural integrity. Considering the aggressive quality of conveyed water and the soil surrounding the pipe, the pipe was given a score of poor for environment.

|                           | Very |      |      |      | Very |
|---------------------------|------|------|------|------|------|
|                           | Good | Good | Fair | Poor | Poor |
|                           | 1.0  | 0.77 | 0.55 | 0.33 | 0.10 |
| Structural Integrity:     |      |      |      |      |      |
| Hydrostatic Pressure Test |      | 0.77 |      |      |      |
| Phenolphthlalein Dye Test |      | 0.77 |      |      |      |
| Hardness Test             |      |      |      |      |      |
| Environment:              |      |      |      |      |      |
| Surrounding Soils         |      |      |      | 0.33 |      |
| Conveyed Water Quality    |      |      |      |      |      |

Table 4. Residual Life Factor - Estimated Useful Life

The arithmetic average of the residual life factors is = 0.55.

*Step 6. Calculate Estimated Remaining Useful Life:* The estimated remaining useful life is equal to the effective remaining life multiplied by the residual life factor. The estimated remaining useful life is =  $34 \times 0.55 = 18.7$ .

Estimated Remaining Useful Life: 18.7 years.

### THIS PAGE INTENTIONALLY BLANK

## Section 6: Stonehouse 12-inch Sewer Forcemain Rehabilitation Plan

Corrosion is a significant concern for water and wastewater utilities. Corrosion management measures, such as the addition of chemical additives that adjust pH and/or add alkalinity, can reduce the effects of corrosion. Asset protection and corrosion management should be considered for all alternatives. The three alternatives considered for the Stonehouse 12-inch sewer forcemain are pH control and/or alkalinity addition, an interior liner and replacement as described below.

## 6.1: Alternative 1. pH Control and/or Alkalinity Addition

Many water utilities have used zinc orthophosphate as a corrosion inhibitor for waters with low alkalinity; however, zinc is expensive and may be problematic with respect to environmental concerns. Non- and reduced-zinc orthophosphates can be just as effective at preventing corrosion in metal pipes. The additive reacts with dissolved metal to form a metal-phosphate coating on the interior walls of the pipe. For cement pipes, the zinc additive is responsible for reacting with the orthophosphate to form the metal –phosphate coating around the inside surface of the pipe. Orthophosphate additives are classified as corrosion inhibitors. Other additives used to increase alkalinity include calcium hydroxide, sodium hydroxide, and sodium carbonate.

Because phosphate is a nutrient and of concern if discharged into a surface water body, sodium hydroxide (i.e., caustic soda), lime, soda ash, and magnesium hydroxide are chemicals often used for pH adjustment and/or alkalinity adjustment in wastewater treatment and recycled water applications. A local chemical supply was contacted for a budgetary quote for sodium hydroxide (reference Table 5). The estimated dosage (based on current flows and pH adjustment from 6.4 to 8.0 in sampled drinking water) is approximately 96 gallons per day of 50% caustic soda.

Chemical addition would require a 7,500 gallon tank with containment, equipped with level monitor and mixer (and potentially insulated, and heat traced if caustic used); flow meter; two chemical feed pumps (one duty, one standby), safety equipment, piping and valves. The addition of a corrosion inhibitor is anticipated to extend the estimated remaining useful life by about 7.5 years (40% increase).

## 6.2: Alternative 2. Non-Structural Reinforcement

The addition of an internal, non-structural liner could extend the life of the Stonehouse 12-inch sewer forcemain by approximately 50 years. A non-structural liner acts solely as a corrosion barrier; it relies on the host pipe for support. Semi-structural liners can be used to cover small holes, but still rely on the host pipe for support. Specific locations for installation of the liner would be governed by estimated operating pressures as measured by an updated and refined Phase 1 and Buildout hydraulic model. In general, the liner would be located where the highest operating pressures were expected to occur as described previously in Section 2.

## 6.3: Alternative 3. Structural Reinforcement

Replacing the Stonehouse 12-inch sewer forcemain with a structural reinforced liner is anticipated to increase the remaining useful life to about 70 years. In addition, chemical addition (see Alternative 1) is recommended as a proactive asset management strategy for this alternative.

### 6.4: Cost Comparison and Recommended Alternative

A comparison of the estimate of probable capital, operations and maintenance (O&M) and amortized costs are presented in Table 5 along with the alternative's estimated useful life.

| Alternative | Capital Cost<br>(\$) | 0 & M Cost<br>(\$) | Amortized Cost<br>(\$/yr) | Estimated<br>Useful Life (yr) |
|-------------|----------------------|--------------------|---------------------------|-------------------------------|
| 1           | 66,894ª              | 34,600             | 38,900                    | 25                            |
| 2           | 949,900              | 9,000              | 61,000                    | 50                            |
| 3           | 1,000,300            | 31,600             | 85,200                    | 70                            |

Table 5. Comparison of Alternatives<sup>a</sup>

<sup>a</sup> Estimated costs represent mutually exclusive items specific to each alternative and include future condition assessments (at either 5 or 10 year intervals), improvements specific to each alternative (e.g., tanks and pumps, liners, or pipe replacement) and, except for Alternative 2, chemical feed.

As shown in Table 5, Alternative 1 (pH/alkalinity addition) is the lowest cost alternative and is thus the recommended alternative. This recommendation will be incorporated into the District's Recycled Water Program Preliminary Design Report along with the recommended steps described in the next section. A more detailed breakdown of costs is attached in the Appendix for reference.

### **References**

- Arbabi, Hossein. Corrosive Soils: Causes, Effects and Mitigations. 2017. Online. Available: http://www.testing-engineers.com/case1.html.
- California Laboratory Services. (2016). CLS Work Order #: CZ10097, Rancho Murieta Community Services District. Rancho Cordova, CA
- Carol H. Tate et al. "Controlling Asbestos Loss from Asbestos-Cement Pipe in Aggressive Waters," EPA. Rep. EPA/600/s2-85/042, 1985.
- D. Wang et al. "Evaluation of Asbestos Cement Pipe Condition," in the CEED Seminar Proc., University of Western Australia. 2012. Available: http://www.ceed.uwa.edu.au/\_data/page/189986/Wang.pdf.

Exponent. Asbestos-Cement (Transite) Pipe in Water Distribution Systems. Online. Available: http://www.exponent.com/services/practices/engineering/buildings-structures/capabilities/asbestoscement-transite-pipe-in-waterdistributi\_/?serviceId=962f01e0-65f2-41ec-b20e-940340a4ab50&loadAllByPageSize=true&knowledgePageSize=3&knowledgePageNum=0& newseventPageSize=3&newseventPageNum=0&showAllProfessionals=4

- EBMUD. "Asbestos Cement Pipe Study," 2013.
- J. L. Parks et al. "Effect of Zinc and Orthophosphate Corrosion Inhibitors on Cement-Based Pipes," Journal - American Water Works Association, vol. 104, no. 1, p. 37, January, 2012.
- MEI-Charlton, Inc. (2016). MEIC Reference #: 8222001-RMCSD, Rancho Murieta Community Services District. Rancho Cordova, CA
- Y. Hu et al. (2013). Guidance Manual for Managing Long Term Performance of Asbestos cement Pipe, Water Research Foundation. U.S.A.
- Rancho Murieta Community Services District. 1973. "Plans for the Construction of Murieta Drive Sewer Lift Station & Force Main." Prepared by Raymond Vail Associates.
- Rancho Murieta Community Services District. 1980 (May). "System Map." Prepared by El Dorado Irrigation District.
- Rancho Murieta Community Services District. 2013 (October). Rancho Murieta Community Services District Recycled Water Standards.
- Rancho Murieta Community Services District. 2016a (January). RMCSD Recycled Water Program Preliminary Design Report, "Figure 1." Prepared by Kennedy/Jenks Consultants.
- Rancho Murieta Community Services District. 2016b (January). RMCSD Recycled Water Program Preliminary Design Report, "Figure 3." Prepared by Kennedy/Jenks Consultants.
- Rancho Murieta Community Services District. 2016c (January). RMCSD Recycled Water Program Preliminary Design Report, "Figure 16." Prepared by Kennedy/Jenks Consultants.
- Rancho Murieta Community Services District. 2016d (January). RMCSD Water Supply Assessment Technical Memorandum, Prepared by Maddaus Water Management.

### THIS PAGE INTENTIONALLY BLANK

## Appendix

# **C**ALIFORNIA **L**ABORATORY **S**ERVICES

3249 Fitzgerald Road Rancho Cordova, CA 95742

December 27, 2016

CLS Work Order #: CZL0915 COC #: 177850

Paul Siebensohn Rancho Murieta Comm. Srvs. Dis P.O. Box 1050; 15160 Jackson Road Rancho Murieta, CA 95683

#### Project Name: 12" F. Main

Enclosed are the results of analyses for samples received by the laboratory on 12/19/16 17:00. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

# **C**ALIFORNIA **L**ABORATORY **S**ERVICES

#### Page 1 of 4

12/27/16 09:16

| - A will be and | - Laps       |                          | CHAIN (                                                        | OF CL       | JSTOD            | Y   |      | С       | LS   | ID I  | No.; C                          | 240915. LOG NO. 1778 |                      |          |          |                                                                                                                  |       |  |
|-----------------|--------------|--------------------------|----------------------------------------------------------------|-------------|------------------|-----|------|---------|------|-------|---------------------------------|----------------------|----------------------|----------|----------|------------------------------------------------------------------------------------------------------------------|-------|--|
| NAME AND /      |              | PORT TO:                 | CLI                                                            | ENT JOB NU  | UMBER            |     | A    | NAL     | YSIS | REC   | UESTED                          | GE                   | OT                   | RAC      | CKER:    |                                                                                                                  |       |  |
| 15              | 60 Jack      | Diebonsohn<br>SonRd      | DESTIN                                                         | ATION LAB   | ATION LABORATORY |     |      |         |      |       |                                 | ED                   | FR                   | EPO      |          |                                                                                                                  |       |  |
| PROJECT M       | ancho MI     | urieta, CA95683          | CLS (916) 638-7301<br>3249 FITZGERALD RD.<br>BANCHO CORDOVA CA |             |                  | RE  | SI   | 0       |      | 0     |                                 | COM                  | POSITE               |          | U        | der #: CZL0915      .OG NO. 177850      E:      T    YES      NO      ALT.      ID:                              |       |  |
| PROJECT N       | 1-2.1        | ). (916)354-3700<br>Naio |                                                                | ICHO COHD   | 95742            | SER | tat  | 100     | 2    | brid  |                                 |                      |                      |          |          |                                                                                                                  |       |  |
| SAMPLED B       | Ron Gire     | centrick /ck             |                                                                |             |                  |     | 6    | ac      | I    | uctiv |                                 | FIELD CONDITION      |                      |          | DNS:     |                                                                                                                  |       |  |
|                 |              |                          |                                                                |             |                  | VES |      |         |      | Ť     |                                 | TUR                  | IN ARC               | DUND .   | TIME     | SPECIAL INSTRUC                                                                                                  |       |  |
| SITE LOCAT      |              | SAMPLE                   |                                                                | CON         | TAINER           |     |      |         |      |       |                                 | 1<br>DAY             | 2<br>DAY             | 3<br>DAY | 5<br>DAY | OR                                                                                                               |       |  |
| DATE            |              |                          | MATRIX                                                         | NO.         | TYPE             | 1V  |      |         |      |       |                                 |                      |                      |          | 5        | ALT.                                                                                                             | ID:   |  |
| 1-116/16        | Teol         | 1.00                     | >0:1                                                           | 1           | Toly             |     | . X. | ×.      | *    | 7     |                                 |                      |                      |          | Λ,       | n an the state of the second |       |  |
|                 |              |                          |                                                                |             |                  |     |      |         |      |       |                                 |                      |                      |          |          |                                                                                                                  |       |  |
|                 |              |                          |                                                                |             | 1                |     | -    | _       |      |       |                                 |                      |                      |          |          |                                                                                                                  |       |  |
|                 |              |                          | 1                                                              |             | 12               |     |      |         |      | 1     |                                 |                      | -                    |          |          |                                                                                                                  |       |  |
|                 | Edf.         |                          |                                                                |             |                  |     |      |         |      | Č.    |                                 |                      |                      |          |          |                                                                                                                  |       |  |
|                 |              |                          |                                                                | 11          | 1                |     |      |         |      |       |                                 | -                    |                      | <br>     | į į      | INVOICE TO:                                                                                                      |       |  |
|                 |              |                          |                                                                | 1 <u>2.</u> |                  |     | 1    |         |      |       |                                 | -                    |                      |          |          |                                                                                                                  |       |  |
|                 | 1            |                          |                                                                |             |                  |     |      |         |      |       |                                 |                      |                      |          |          |                                                                                                                  |       |  |
|                 | <u></u>      |                          |                                                                |             | 1                |     |      |         |      |       |                                 | -                    |                      |          |          | PO. #                                                                                                            | -     |  |
|                 | 1. 2         |                          |                                                                |             |                  |     | PRES | SERVATI | VES: |       | (1) HCL<br>(2) HNO <sub>2</sub> | 9                    | 3) = COL<br>4) = NaO | P        | L        | (5) = H <sub>2</sub> SO <sub>4</sub><br>(6) = Na-S.O.                                                            | (7) = |  |
| SUSPECTED       | CONSTITUENTS |                          |                                                                |             |                  |     |      |         |      |       |                                 |                      |                      |          |          |                                                                                                                  |       |  |

#### Page 2 of 4

12/27/16 09:16

| Rancho Murieta Comm. Srvs. Dis    | Project: 12" F. Main             |                           |
|-----------------------------------|----------------------------------|---------------------------|
| P.O. Box 1050; 15160 Jackson Road | Project Number: [none]           | CLS Work Order #: CZL0915 |
| Rancho Murieta, CA 95683          | Project Manager: Paul Siebensohn | COC #: 177850             |

### Conventional Chemistry Parameters by APHA/EPA Methods

| Analyte                                        | Result       | Reporting<br>Limit | Units    | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|------------------------------------------------|--------------|--------------------|----------|----------|---------|----------|----------|-----------|-------|
| Soil (CZL0915-01) Soil Sampled: 12/16/16 09:30 | Received: 12 | 2/19/16 17:00      |          |          |         |          |          |           |       |
| Chloride                                       | 14           | 5.0                | mg/kg    | 1        | CZ09372 | 12/20/16 | 12/20/16 | EPA 300.0 |       |
| рН                                             | 5.91         | 1.00               | pH Units | "        | CZ09375 | 12/20/16 | 12/20/16 | EPA 9045C |       |
| Specific Conductance (EC)                      | 12           | 1.0                | µmhos/cm | . "      | CZ09450 | 12/22/16 | 12/22/16 | EPA 120.1 |       |
| Sulfate as SO4                                 | 110          | 5.0                | mg/kg    | "        | CZ09372 | 12/20/16 | 12/20/16 | EPA 300.0 |       |

| Page 3 of 4                       |                                  | 12/27/16 09:16            |
|-----------------------------------|----------------------------------|---------------------------|
| Rancho Murieta Comm. Srvs. Dis    | Project: 12" F. Main             |                           |
| P.O. Box 1050; 15160 Jackson Road | Project Number: [none]           | CLS Work Order #: CZL0915 |
| Rancho Murieta, CA 95683          | Project Manager: Paul Siebensohn | COC #: 177850             |

### Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

|                                     |        | Reporting   |          | Spike      | Source    |          | %REC   |     | RPD   |       |
|-------------------------------------|--------|-------------|----------|------------|-----------|----------|--------|-----|-------|-------|
| Analyte                             | Result | Limit       | Units    | Level      | Result    | %REC     | Limits | RPD | Limit | Notes |
| Batch CZ09372 - General Prep        |        |             |          |            |           |          |        |     |       |       |
| Blank (CZ09372-BLK1)                |        |             |          | Prepared & | Analyzed: | 12/20/16 |        |     |       |       |
| Sulfate as SO4                      | ND     | 5.0         | mg/kg    |            |           |          |        |     |       |       |
| Chloride                            | ND     | 5.0         | "        |            |           |          |        |     |       |       |
| LCS (CZ09372-BS1)                   |        |             |          | Prepared & | Analyzed: | 12/20/16 |        |     |       |       |
| Sulfate as SO4                      | 48.2   | 5.0         | mg/kg    | 50.0       |           | 96       | 75-125 |     |       |       |
| Chloride                            | 49.6   | 5.0         | "        | 50.0       |           | 99       | 75-125 |     |       |       |
| LCS Dup (CZ09372-BSD1)              |        |             |          | Prepared & | Analyzed: | 12/20/16 |        |     |       |       |
| Sulfate as SO4                      | 53.5   | 5.0         | mg/kg    | 50.0       |           | 107      | 75-125 | 10  | 25    |       |
| Chloride                            | 50.3   | 5.0         | "        | 50.0       |           | 101      | 75-125 | 2   | 25    |       |
| Matrix Spike (CZ09372-MS1)          | Sou    | rce: CZL078 | 7-01     | Prepared & | Analyzed: | 12/20/16 |        |     |       |       |
| Sulfate as SO4                      | 86.4   | 5.0         | mg/kg    | 50.0       | 34.5      | 104      | 75-125 |     |       |       |
| Chloride                            | 123    | 5.0         | "        | 50.0       | 76.9      | 93       | 75-125 |     |       |       |
| Matrix Spike Dup (CZ09372-MSD1)     | Sou    | rce: CZL078 | 7-01     | Prepared & | Analyzed: | 12/20/16 |        |     |       |       |
| Sulfate as SO4                      | 86.6   | 5.0         | mg/kg    | 50.0       | 34.5      | 104      | 75-125 | 0.2 | 30    |       |
| Chloride                            | 124    | 5.0         | "        | 50.0       | 76.9      | 93       | 75-125 | 0.2 | 30    |       |
| Batch CZ09450 - General Preparation |        |             |          |            |           |          |        |     |       |       |
| Blank (CZ09450-BLK1)                |        |             |          | Prepared & | Analyzed: | 12/22/16 |        |     |       |       |
| Specific Conductance (EC)           | ND     | 1.0         | µmhos/cm |            |           |          |        |     |       |       |

#### Page 4 of 4

12/27/16 09:16

| Rancho M<br>P.O. Box<br>Rancho M | Iurieta Comm. Srvs. Dis<br>1050; 15160 Jackson Road<br>Iurieta, CA 95683 | Project:<br>Project Number:<br>Project Manager: | 12" F. Main<br>[none]<br>Paul Siebensohn | <b>CLS Work Order #: CZL0915</b><br>COC #: 177850 |
|----------------------------------|--------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------|---------------------------------------------------|
|                                  |                                                                          | Notes and Defin                                 | itions                                   |                                                   |
| DET                              | Analyte DETECTED                                                         |                                                 |                                          |                                                   |
| ND                               | Analyte NOT DETECTED at or above the reporting limit (or r               | method detection limit                          | when specified)                          |                                                   |
| NR                               | Not Reported                                                             |                                                 |                                          |                                                   |
| dry                              | Sample results reported on a dry weight basis                            |                                                 |                                          |                                                   |
| RPD                              | Relative Percent Difference                                              |                                                 |                                          |                                                   |
|                                  |                                                                          |                                                 |                                          |                                                   |

# **C**ALIFORNIA **L**ABORATORY **S**ERVICES

3249 Fitzgerald Road Rancho Cordova, CA 95742

September 12, 2016

CLS Work Order #: CZI0097 COC #: 174022

Paul Siebensohn Rancho Murieta Comm. Srvs. Dis P.O. Box 1050; 15160 Jackson Road Rancho Murieta, CA 95683

### Project Name: WWRP

Enclosed are the results of analyses for samples received by the laboratory on 09/02/16 15:20. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

#### Page 1 of 7

09/12/16 14:09

| Murieta Comi<br>1050; 15160<br>Murieta, CA 9 | n. Srvs.<br>Jacksor<br>95683 | Dis<br>n Road |                       | I<br>P    | Project I<br>roject N                                                     | Project:<br>Number:<br>Aanager: | W<br>[no<br>Pau | /WR<br>ne]<br>ıl Sie | P<br>benso | ohn                          |                      | CI<br>Ci   | LS W<br>OC #    | <b>Vork</b><br>: 174 | <b>Ord</b><br>022 | er #: CZI009                                                          | 7         |
|----------------------------------------------|------------------------------|---------------|-----------------------|-----------|---------------------------------------------------------------------------|---------------------------------|-----------------|----------------------|------------|------------------------------|----------------------|------------|-----------------|----------------------|-------------------|-----------------------------------------------------------------------|-----------|
| CLS                                          | - Lab                        | S             | c                     | HAIN      | OF CL                                                                     | JSTOD                           | Y               |                      | CL         | S ID                         | No.; CZ              | IXOP       | 17              |                      | LC                | <b>DG NO.</b> 1                                                       | 7402      |
|                                              | dial 1                       | REPORT TO:    | 8. NO. 4              | CLJ       | JENT JOB NUMBER ANALYSIS REQUESTED GEOTR                                  |                                 |                 |                      | RAC        | CKEB:                        |                      |            |                 |                      |                   |                                                                       |           |
| NAME AND A                                   | DORESS R                     | ancho Mur     | ieta CSD              | the CSD   |                                                                           |                                 |                 |                      | TT         | ED                           | FR                   | EPC        | DRT             | YES                  |                   |                                                                       |           |
| POP                                          | 3 10                         | 150           |                       | DESTIN    | ATION LAS                                                                 | SORATORY                        | P               |                      |            |                              |                      | GL         | OB/             | AL II                | D:                |                                                                       |           |
| RAM AROUECT MU                               | NAGER                        | a 456         | K3                    | 324       | CLS (916) 638-7301<br>3249 FITZGERALD RD.<br>RANCHO CORDOVA, CA.<br>95742 |                                 | RE              | X                    | - 1        |                              |                      | COMPOSITE: |                 |                      |                   |                                                                       |           |
| PROJECT NA                                   | ME WH                        | WEP           | 870.5368              | RAN       |                                                                           |                                 | SEF             | SERVA                |            | <u>्र त्यापः स्वत्यवर्धः</u> |                      |            |                 |                      |                   |                                                                       |           |
| SAMPLED BY                                   | M                            | .Ka           |                       | OTHER     |                                                                           | ER                              |                 |                      | NA 1       |                              |                      | FIELD      | CONE            | NTIONS               | k                 |                                                                       |           |
| JOB DESCRIP                                  | TION                         | anoaliev      | odio                  |           |                                                                           | <u>. 11. 1</u>                  | VIT             | 4                    |            |                              |                      |            |                 |                      |                   |                                                                       |           |
| -                                            |                              |               |                       |           |                                                                           |                                 | ES              | 26                   |            |                              |                      | TUR        | N ARC           | DUND                 | TIME              | SPECIAL INS                                                           | STRUCTION |
| SITE LOCATIO                                 | IN WW                        | RP CCP        | ALC: NO DE CONTRACTOR |           |                                                                           |                                 |                 | 10                   | - 1        |                              |                      |            | NA.             |                      | AV.               | OF                                                                    | e -       |
| DATE                                         | TIME                         | S/<br>IDENTIF | CATION                | MATRIX    | NO.                                                                       | TAINER                          | N               | 2                    |            |                              |                      | 6          |                 | a                    | - 6               | ALT.                                                                  | ID:       |
| 9-2-16                                       | 1120                         | Tertiary      | Eff                   | 420       | 1                                                                         | PL                              | 3               | P                    |            |                              |                      |            |                 |                      | X                 |                                                                       |           |
|                                              |                              | S             |                       |           |                                                                           | 1.                              | 12              | Ľ.                   |            |                              |                      |            |                 |                      |                   |                                                                       | . F       |
|                                              |                              |               | 11 A A 부분             |           |                                                                           |                                 | 1               |                      |            | 5. PA                        |                      |            |                 |                      |                   |                                                                       |           |
|                                              | 1.0                          |               | 11911-03              |           |                                                                           |                                 |                 |                      |            |                              |                      |            |                 |                      |                   |                                                                       |           |
|                                              | 150                          |               |                       | 1.1       |                                                                           |                                 |                 |                      |            |                              |                      | 10.1       |                 |                      |                   |                                                                       |           |
| 3 <u></u>                                    | Carlo L                      | 1.0.1         |                       |           | 12                                                                        |                                 |                 |                      |            |                              |                      |            |                 |                      |                   |                                                                       |           |
|                                              |                              |               | - Min With            |           | 167.5                                                                     |                                 | 12              |                      | -          |                              |                      |            |                 |                      |                   | 1                                                                     |           |
|                                              |                              |               |                       |           |                                                                           | 1.5-                            |                 |                      |            | 1                            |                      |            |                 |                      |                   | INVOICE TO:                                                           | 1.1       |
|                                              |                              |               |                       |           |                                                                           | 1                               |                 |                      |            |                              |                      |            | 1               |                      |                   | INGLE IG.                                                             |           |
|                                              | 0.11009                      |               | 65.4. S.              |           |                                                                           | 1                               |                 |                      |            |                              |                      |            | -               | -                    |                   |                                                                       |           |
|                                              |                              |               |                       |           |                                                                           |                                 |                 |                      |            | 1                            |                      | -          |                 |                      | · · · ·           | R0.#                                                                  |           |
|                                              |                              |               |                       | 1.19      | 1                                                                         |                                 | -               |                      | -          | -                            |                      | -          | -               |                      | -                 | QUOTE #                                                               |           |
| SUSPECTED 0                                  | CONSTITUENT                  | 8             |                       |           |                                                                           | 1                               | -               | PRES                 | EPWATIVE   | 68:                          | (1) HGL              | G          | 3) = COL        | D                    |                   | (5) = H <sub>4</sub> SO <sub>4</sub>                                  | (7) =     |
| RI                                           | LINQUISH                     | HO BY USIGN   | PRINT N               | AME / CON | PANY                                                                      |                                 | DATE            | / TIM                | E          | 1                            | (2) HNO,<br>RECĘIVED | BY (SIG    | 4) = NaO<br>3N) | н                    |                   | (6) = Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub><br>PRINT NAME / C | OMPANY    |
| Ma                                           | hould                        | Till          | Mielael               | Ther      | Kmes                                                                      | 20 9-2                          | 2-1             | chi                  | 41         | -                            | -thi                 | 0          | 507             |                      |                   | Tiler)                                                                | d         |
| 51                                           | vr                           | -/            | -They                 | 1         | 115                                                                       | 9-                              | 2-1             | 4 1                  | 50         |                              | 1                    |            |                 |                      |                   | 11. 2.                                                                | - 6-5     |
| 1                                            |                              | S. 7 1. 18    | yin                   | 1.3       |                                                                           |                                 |                 |                      | 0.20       |                              |                      |            |                 |                      |                   |                                                                       |           |
| RECT) AT LAB                                 | BY                           | 200           |                       | DATE      | IME:                                                                      | 1                               | 100             |                      |            | (15                          | )                    | CONDITION  | S/COM           | MENTS                |                   |                                                                       |           |
| SHIPPE                                       | D BY                         | EED X         | <b>`</b>              | UPS       | - 2-1                                                                     |                                 | 5 L             | 0                    | 100        | 10                           |                      |            | IR RII          | 1#                   |                   |                                                                       |           |
| SHIPPE                                       | D BA:                        | I FED X       |                       | UPS       | 196                                                                       | 0                               | THER            | -                    | 1.1        |                              |                      | A          | IR BIL          | 1,#                  |                   |                                                                       |           |

| no Murieta Comm. Srvs. Dis<br>Box 1050; 15160 Jackson Road<br>no Murieta, CA 95683 | Project: WWRP<br>Project Number: [none]<br>Project Manager: Paul Siebensohn | <b>CLS Work Order #: CZ10097</b><br>COC #: 174022 |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------|
|                                                                                    |                                                                             |                                                   |
| SAMI                                                                               | CLS LABS<br>PLE RECEIVING EXCEPTION RE                                      | PORTS                                             |
| CLS Labs Job # <u>CZTO</u>                                                         | 097-Pirk                                                                    |                                                   |
| Problem discovered by:                                                             | Devor                                                                       | Date: <u>3 12-116</u>                             |
| Nature of problem                                                                  |                                                                             |                                                   |
| Sulfite Chlorine,                                                                  | Fotal Chlorine, Residual                                                    | Dissolved O2                                      |
| (Circle analysis above) Rec                                                        | eived out of HOLD time.                                                     |                                                   |
|                                                                                    |                                                                             |                                                   |
| CN-st-state 12 Nor                                                                 | No. Spoke With:                                                             |                                                   |
| By whom:                                                                           | Spoke with<br>Date:/                                                        | /                                                 |
| Client instructions:                                                               |                                                                             |                                                   |
|                                                                                    |                                                                             |                                                   |
|                                                                                    |                                                                             |                                                   |
|                                                                                    |                                                                             |                                                   |
| Resolution of problem:                                                             |                                                                             |                                                   |
| <u>Resolution of problem</u> :<br>Logged in regardless and                         | will be ran for analysis requested.                                         |                                                   |
| <u>Resolution of problem</u> :<br>Logged in regardless and                         | will be ran for analysis requested.                                         |                                                   |
| Resolution of problem:<br>Logged in regardless and                                 | will be ran for analysis requested.                                         |                                                   |
| Resolution of problem:<br>Logged in regardless and                                 | will be ran for analysis requested.                                         |                                                   |
| Resolution of problem:<br>Logged in regardless and                                 | will be ran for analysis requested.                                         | H:W:INOretlana/SampleException.Doc                |

CA DOHS ELAP Accreditation/Registration Number 1233

Fax: 916-638-4510

## Page 3 of 7

09/12/16 14:09

| Rancho Murieta Comm. Srvs. Dis    | Project: WWRP                    |                           |
|-----------------------------------|----------------------------------|---------------------------|
| P.O. Box 1050; 15160 Jackson Road | Project Number: [none]           | CLS Work Order #: CZI0097 |
| Rancho Murieta, CA 95683          | Project Manager: Paul Siebensohn | COC #: 174022             |

### Conventional Chemistry Parameters by APHA/EPA Methods

| Analyte                          | Result                  | Reporting<br>Limit | Units      | Dilution | Batch   | Prepared | Analyzed | Method              | Notes |
|----------------------------------|-------------------------|--------------------|------------|----------|---------|----------|----------|---------------------|-------|
| Tertiary Eff. (CZI0097-01) Water | Sampled: 09/02/16 11:20 | Received: 09/      | )2/16 15:2 | 0        |         |          |          |                     |       |
| Bicarbonate as CaCO3             | 40                      | 5.0                | mg/L       | 1        | CZ06494 | 09/07/16 | 09/07/16 | SM2320B             |       |
| Carbonate as CaCO3               | ND                      | 5.0                | "          |          | "       | "        | "        | "                   |       |
| Hydroxide as CaCO3               | ND                      | 5.0                | "          | "        | "       | "        | "        |                     |       |
| Langlier Index                   | -2.41                   |                    | Std. Units | 3 "      | CZ06600 | 09/09/16 | 09/09/16 | SM 203, 16th<br>Ed. |       |
| рН                               | 6.38                    | 0.01               | pH Units   | "        | CZ06399 | 09/02/16 | 09/02/16 | SM4500-H B          | HT-F  |
| Total Alkalinity                 | 40                      | 5.0                | mg/L       | "        | CZ06494 | 09/07/16 | 09/07/16 | SM2320B             |       |
| <b>Total Dissolved Solids</b>    | 350                     | 10                 | "          | "        | CZ06495 | 09/07/16 | 09/08/16 | SM2540C             |       |

09/12/16 14:09

| Rancho Murieta Comm. Srvs. Dis    | Project: WWRP                    |                           |
|-----------------------------------|----------------------------------|---------------------------|
| P.O. Box 1050; 15160 Jackson Road | Project Number: [none]           | CLS Work Order #: CZI0097 |
| Rancho Murieta, CA 95683          | Project Manager: Paul Siebensohn | COC #: 174022             |

## Metals by EPA 200 Series Methods

| Analyte                          | Result                  | Reporting<br>Limit | Units     | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|----------------------------------|-------------------------|--------------------|-----------|----------|---------|----------|----------|-----------|-------|
| Tertiary Eff. (CZI0097-01) Water | Sampled: 09/02/16 11:20 | Received: 09/0     | 2/16 15:2 | 20       |         |          |          |           |       |
| Calcium                          | 28                      | 1.0                | mg/L      | 1        | CZ06530 | 09/08/16 | 09/08/16 | EPA 200.7 |       |

| Page 5 of 7                       |                                  | 09/12/16 14:09            |
|-----------------------------------|----------------------------------|---------------------------|
| Rancho Murieta Comm. Srvs. Dis    | Project: WWRP                    |                           |
| P.O. Box 1050; 15160 Jackson Road | Project Number: [none]           | CLS Work Order #: CZI0097 |
| Rancho Murieta, CA 95683          | Project Manager: Paul Siebensohn | COC #: 174022             |

### Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

|                                     |        | Reporting     |       | Spike       | Source     |             | %REC   |     | RPD   |       |
|-------------------------------------|--------|---------------|-------|-------------|------------|-------------|--------|-----|-------|-------|
| Analyte                             | Result | Limit         | Units | Level       | Result     | %REC        | Limits | RPD | Limit | Notes |
| Batch CZ06494 - General Preparation |        |               |       |             |            |             |        |     |       |       |
| Blank (CZ06494-BLK1)                |        |               |       | Prepared &  | Analyzed:  | : 09/07/16  |        |     |       |       |
| Total Alkalinity                    | ND     | 5.0           | mg/L  |             |            |             |        |     |       |       |
| Bicarbonate as CaCO3                | ND     | 5.0           | "     |             |            |             |        |     |       |       |
| Carbonate as CaCO3                  | ND     | 5.0           | "     |             |            |             |        |     |       |       |
| Hydroxide as CaCO3                  | ND     | 5.0           | "     |             |            |             |        |     |       |       |
| Duplicate (CZ06494-DUP1)            | Sou    | rce: CZI0070- | -28   | Prepared &  | Analyzed:  | : 09/07/16  |        |     |       |       |
| Total Alkalinity                    | 615    | 5.0           | mg/L  |             | 626        |             |        | 2   | 20    |       |
| Bicarbonate as CaCO3                | 552    | 5.0           | "     |             | 566        |             |        | 2   | 20    |       |
| Carbonate as CaCO3                  | 63.0   | 5.0           | "     |             | 60.0       |             |        | 5   | 20    |       |
| Hydroxide as CaCO3                  | ND     | 5.0           | "     |             | ND         |             |        |     | 20    |       |
| Batch CZ06495 - General Preparation |        |               |       |             |            |             |        |     |       |       |
| Blank (CZ06495-BLK1)                |        |               |       | Prepared: ( | 09/07/16 A | nalyzed: 09 | /08/16 |     |       |       |
| Total Dissolved Solids              | ND     | 10            | mg/L  |             |            |             |        |     |       |       |
| Duplicate (CZ06495-DUP1)            | Sou    | rce: CZI0155- | -01   | Prepared: ( | 09/07/16 A | nalyzed: 09 | /08/16 |     |       |       |
| Total Dissolved Solids              | 1190   | 10            | mg/L  |             | 1140       |             |        | 4   | 20    |       |

| Page | 6 | of | 7 |
|------|---|----|---|
|      |   |    |   |

09/12/16 14:09

| Rancho Murieta Comm. Srvs. Dis    | Project: WWRP                    |                           |
|-----------------------------------|----------------------------------|---------------------------|
| P.O. Box 1050; 15160 Jackson Road | Project Number: [none]           | CLS Work Order #: CZI0097 |
| Rancho Murieta, CA 95683          | Project Manager: Paul Siebensohn | COC #: 174022             |

### Metals by EPA 200 Series Methods - Quality Control

|                            |                    | Reporting   |                               | Spike                         | Source    |          | %REC   |     | RPD   |       |
|----------------------------|--------------------|-------------|-------------------------------|-------------------------------|-----------|----------|--------|-----|-------|-------|
| Analyte                    | Result             | Limit       | Units                         | Level                         | Result    | %REC     | Limits | RPD | Limit | Notes |
| Batch CZ06530 - EPA 3010A  |                    |             |                               |                               |           |          |        |     |       |       |
| Blank (CZ06530-BLK1)       |                    |             |                               | Prepared &                    | Analyzed: | 09/08/16 |        |     |       |       |
| Calcium                    | ND                 | 1.0         | mg/L                          |                               |           |          |        |     |       |       |
| LCS (CZ06530-BS1)          |                    |             |                               | Prepared &                    | Analyzed: | 09/08/16 |        |     |       |       |
| Calcium                    | 5.20               | 1.0         | mg/L                          | 5.00                          |           | 104      | 85-115 |     |       |       |
| Matrix Spike (CZ06530-MS1) | Sourc              | e: CZI0222- | 01                            | Prepared & Analyzed: 09/08/16 |           |          |        |     |       |       |
| Calcium                    | 32.0               | 1.0         | mg/L                          | 5.00                          | 26.7      | 107      | 70-130 |     |       |       |
| Matrix Spike (CZ06530-MS2) | Source: CZI0221-01 |             | Prepared & Analyzed: 09/08/16 |                               | 09/08/16  |          |        |     |       |       |
| Calcium                    | 91.2               | 1.0         | mg/L                          | 5.00                          | 88.7      | 49       | 70-130 |     |       | QM-4X |

| Page 7 of                                                                                                                                                                                                                                                  | 7                                                                                |                                                 |                                   | 09/12/16 14:09                                    |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------|---------------------------------------------------|--|--|
| Rancho Murieta Comm. Srvs. Dis<br>P.O. Box 1050; 15160 Jackson Road<br>Rancho Murieta, CA 95683                                                                                                                                                            |                                                                                  | Project:<br>Project Number:<br>Project Manager: | WWRP<br>[none]<br>Paul Siebensohn | <b>CLS Work Order #: CZI0097</b><br>COC #: 174022 |  |  |
|                                                                                                                                                                                                                                                            |                                                                                  | Notes and Defin                                 | itions                            |                                                   |  |  |
| QM-4X The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits. |                                                                                  |                                                 |                                   |                                                   |  |  |
| HT-F                                                                                                                                                                                                                                                       | This is a field test method and it is performed in the lab outside holding time. |                                                 |                                   |                                                   |  |  |
| A-RES                                                                                                                                                                                                                                                      | -2.41                                                                            |                                                 |                                   |                                                   |  |  |
| DET                                                                                                                                                                                                                                                        | Analyte DETECTED                                                                 |                                                 |                                   |                                                   |  |  |
| ND                                                                                                                                                                                                                                                         | Analyte NOT DETECTED at or above the reporting lin                               | nit (or method detection limit                  | when specified)                   |                                                   |  |  |
| NR                                                                                                                                                                                                                                                         | Not Reported                                                                     |                                                 |                                   |                                                   |  |  |
| dry                                                                                                                                                                                                                                                        | Sample results reported on a dry weight basis                                    |                                                 |                                   |                                                   |  |  |
| RPD                                                                                                                                                                                                                                                        | Relative Percent Difference                                                      |                                                 |                                   |                                                   |  |  |
|                                                                                                                                                                                                                                                            |                                                                                  |                                                 |                                   |                                                   |  |  |



| TO:                | Rancho Murieta Community Services<br>District                                                    | Client PO No:    | N/A                    |
|--------------------|--------------------------------------------------------------------------------------------------|------------------|------------------------|
| Address:           | Attention: Mr Paul Siebensohn<br>P.O. Box 1050<br>15160 Jackson Road<br>Rancho Murieta, CA 95683 | Reference<br>No: | MEIC-8220001-<br>RMCSD |
| Tel No.:<br>Email: | 916-354-7000<br>psiebensohn@ranchomurietacsd.com                                                 | Date:            | February 8, 2017       |

### SUBJECT: Asbestos Cement (AC) Pipe Sections Testing

Dear Mr Paul Siebensohn,

MEI-Charlton, Inc. (MEIC) was retained by the Rancho Murieta Community Services district (RMCSD) to investigate the condition of the asbestos cement (AC) pipe in the RMCSD's water distribution and wastewater collection system, collectively referred to as 'systems'. No maintenance, repair or leak/failure data were reported to MEIC. In order to determine the AC pipes' physical and chemical properties and evaluate their condition, MEI-Charlton, Inc. (MEIC) was retained by the RMCSD to perform various tests as identified in the Scope of Work (SOW) and summarized below:

- Scratch and hardness testing with Type Shore D Durometer of ACP section
- Phenolphthalein indicator staining test performed on ACP section

#### 1. Introduction

A total of three asbestos cement pipes (ACP) pieces were received (shown in Figure 1) by MEIC for testing in accordance with the agreed SOW. All ACP sections received were labeled by the RMCSD as (i) Force Main Jackson High (two pieces) and (ii) Old Sewer Force main going upto Stone House and were subsequently assigned an MEIC label (Pipe Sample #s 1, 2 and 3).



MEI-Charlton, Inc. Website: <u>www.meic.com</u> 7220 N Lombard St, Portland, OR 97203-3208 Tel.: 503-228-9663; Fax: 503-228-4065

| TO:             | Rancho Murieta Community Service District |
|-----------------|-------------------------------------------|
| SUBJECT:        | AC Pipe Testing                           |
| <b>REF NO.:</b> | MEIC-8222001-RMCSD                        |



Figure 1: Photographs showing Sample 1-3 as received

Pipe section 1 and 2 were from the same piece (broken from the same large piece) and had length of 5 inch and 6 inches respectively for sample 1 and Sample 2. The thickness of the wall was 1 inch in each case.

### 2. Mechanical Tests

**Scratch test** was performed by using a small splinter cut out of a hard plastic piece that was 1/8 inch thick and 4 inch long. The tip of the piece was tapered. This plastic needle tip was then firmly placed on the surface to be tested and slowly moved in a straight line (at an angle of 45-75 degree) under constant pressure during the travel. Resistance to the motion was assessed as soft, medium and hard. Scratch tests on the outer surface of sample revealed medium to hard scratch in all three cases. Inner surface of the pipe pieces was softer than the outer surface.

Hardness measurements were performed using a Shore D durometer. The measurement surface was cleaned before making the measurement.

MEI-Charlton, Inc. Website: <u>www.meic.com</u> 7220 N Lombard St, Portland, OR 97203-3208 Tel.: 503-228-9663; Fax: 503-228-4065



Figure 2a: Outside view of the pipe section wall of Sample 1 (left) and Sample 2 (right)



Figure 2b: Inside view of the pipe section wall of Sample 1 (left) and Sample 2 (right)


Figure 3a: Inside and outside views of sample 3 pipe section.





# Figure 3b: Photograph of Sample 3 side wall showing delamination of the interior wall

Figure 4: Photographs showing Samples 1 and 2 after cutting. Seen are outside (Top) and inside (bottom) surfaces.

**Hardness Measurements** 

# TO:Rancho Murieta Community Service DistrictSUBJECT:AC Pipe TestingREF NO.:MEIC-8222001-RMCSD

Hardness was measured in Shore D units at 6 locations on (i) the outside, (ii) inside of the pipe surface of the pipe along the length of the section (Table - 1). In addition the Shore d hardness was measured across the thickness of the pipe wall at the (i) inner side, (ii) middle and (ii) outer side of the wall. Results of the measurements are given in Table - 2 below.

| Specimen | Hardness | Hardness (Shore D) Measured on Pipe Wall (outside) Along the Axis |    |    |    |    |    |
|----------|----------|-------------------------------------------------------------------|----|----|----|----|----|
| Location | 1        | 2                                                                 | 3  | 4  | 5  | 6  |    |
| Pipe 1   | 71       | 68                                                                | 70 | 70 | 72 | 71 | 70 |
| Pipe 2   | 65       | 71                                                                | 72 | 70 | 68 | 71 | 70 |
| Pipe 3   | 74       | 80                                                                | 68 | 72 | 74 | 72 | 73 |

## Table 1a: Pipe hardness measurements in Shore D along the pipe wall (outside surface)

## Table 1b: Pipe hardness measurements in Shore D along the pipe wall (inside surface)

| Specimen | Hardness (Shore D) Measured on Pipe Wall (inside) Along the Axis |    |    |    |    |    | Average |
|----------|------------------------------------------------------------------|----|----|----|----|----|---------|
| Location | 1                                                                | 2  | 3  | 4  | 5  | 6  |         |
| Pipe 1   | 60                                                               | 62 | 62 | 63 | 58 | 60 | 61      |
| Pipe 2   | 61                                                               | 62 | 60 | 61 | 61 | 58 | 61      |
| Pipe 3   | 62                                                               | 63 | 61 | 62 | 60 | 61 | 62      |

Table – 2: Pipe hardness measurements (Shore D) across the thickness of the pipe wall (Cross Section)

| Measuremen<br>t<br>No | Hardness Shore D<br>Pipe Sample 1 |            |       | Hardness Shore D<br>Pipe sample 2 |        |       | Hardness Shore D<br>Pipe Sample 3 |        |       |
|-----------------------|-----------------------------------|------------|-------|-----------------------------------|--------|-------|-----------------------------------|--------|-------|
| Location              | Inner                             | Middl<br>e | Outer | Inner                             | Middle | Outer | Inne<br>r                         | Middle | Outer |
| 1                     | 52                                | 89         | 65    | 50                                | 88     | 68    | 62                                | 89     | 71    |
| 2                     | 60                                | 90         | 68    | 51                                | 89     | 71    | 62                                | 88     | 72    |
| 3                     | 58                                | 88         | 70    | 46                                | 90     | 71    | 63                                | 90     | 80    |
| 4                     | 61                                | 88         | 71    | 51                                | 91     | 70    | 61                                | 88     | 68    |
| 5                     | 63                                | 91         | 68    | 52                                | 88     | 72    | 61                                | 90     | 70    |
| 6                     | 61                                | 88         | 78    | 48                                | 90     | 70    | 60                                | 90     | 70    |
| Average               | 59                                | 89         | 70    | 50                                | 89     | 70    | 62                                | 89     | 72    |

The inner wall of the pipe showed lower hardness values as compared to the outer wall hardness. The middle of the wall thickness had higher hardness than either of the inner or outer wall of the pipe. In all three cases the inner hardness of the pipe along the pipe segment axis was relatively constant with an average of 61 Shore D for the sample 1, and the outside ranged from 65 to 88 Shore D

# TO:Rancho Murieta Community Service DistrictSUBJECT:AC Pipe TestingREF NO.:MEIC-8222001-RMCSD

#### Page 7 of 10

### 3. Phenolphthalein Indicator Staining Test:

Submitted AC pipe segments were cut and polished (100 micron grit paper) for phenolphthalein staining tests for assessment of extent of leaching of calcium. The pipe wall cross section conditions were photographically documented (Figures 5, 6 and 7).



Figure 5: Photographs of Sample 1 wall cross section after staining with phenolphthalein. Note the white areas showing loss of alkalinity

TO:Rancho Murieta Community Service DistrictSUBJECT:AC Pipe TestingREF NO.:MEIC-8222001-RMCSD



Figure 6: Photographs Sample 2 wall cross section after staining with phenolphthalein. Note the white areas showing loss of alkalinity



Figure 7: Photographs of sample 3 wall cross section after staining with phenolphthalein. Note the white areas showing loss of alkalinity



Figure 8: Photograph of Sample 3 wall cross section showing maximum attack depth locations

|          | outside depth<br>(inches0 | Inside depth<br>(inches) | Total Depth<br>(inches) | remaining depth<br>of pipe wall<br>(inches) |
|----------|---------------------------|--------------------------|-------------------------|---------------------------------------------|
| Sample 1 | 0.25                      | 0.1875                   | 0.4375                  | 0.5625                                      |
| Sample 2 | 0.25                      | 0.1875                   | 0.4375                  | 0.5625                                      |
| Sample 3 | 0.375                     | 0.25                     | 0.625                   | 0.375                                       |

#### Table – 3: Attack depth of the pipe samples using the phenolphthalein test

#### 4. Conclusions

- 1) Hardness was uniform across the inner and outer surface and along the central area of the pipe segment cross sections. Some exceptions were noticed.
- 2) The calcium leaching is fairly uniform inside of the wall while the outside wall showed variable leaching depth.

It should be noted that only one representative specimen was submitted for investigation and these pipe specimens may not accurately represent the condition of the whole pipeline.

Please do not hesitate to contact us with any questions.

#### **Report Released By:**

#### **Business and Contracts**

#### **Disclaimer:**

© Copyright 2017, MEI-Charlton, Inc. (MEIC). This report constitutes a confidential communication between the client and MEIC, and the report, as a whole or in parts is not allowed be published in any form or distributed to anyone without MEI-Charlton, Inc.'s written permission. This report is meant for information purposes only, and to inform the identified client the outcome of the study/testing commissioned by the client explicitly identified at the beginning of the report. Any questions, issues related to the scope of work carried out by MEIC and reported in this report must be conveyed in writing to MEIC within 30 days of the date of issue of this report (sent to client by electronic or other means). Absence of such issues, questions were an explicit acceptance of the report in as is form. All additional consultation time, experiments were in addition to the original quote and invoiced amount and were charged at the prevailing rates. Client and/or their authorized representatives may choose to use the results of this report at their own risk and have agreed to hold MEIC, its officers, employees, principals, stockholders (past, present and future) and their successors free of any responsibility whatsoever. Client further agrees to reimburse any damages and the costs or fees to defend that MEIC may incur if a lawsuit or damages are awarded against MEIC, hereunder any prevailing laws.

# Table 5 - Comparison of Alternatives - Detail

Interest= 5%

|                                                    |           |         | Useful Life |         |             |
|----------------------------------------------------|-----------|---------|-------------|---------|-------------|
|                                                    | Capital   | 0 & M   | Expectancy  | NPW     | Annual Cost |
|                                                    | [\$]      | [\$/yr] | [years]     | [\$]    | [\$]        |
| Alternative 1 - Chemical Addition                  |           |         | 20          |         |             |
| Condition Assessment                               |           | 6,000   |             |         | 5,000       |
| Chemical Feed System                               | 66,894    |         | 20          | 66,894  | 5,368       |
| Chemical Demand (0.34 MGD flow)                    |           | 28,569  |             |         | 28,569      |
| Total                                              | 66,894    | 34,569  |             |         | 38,936      |
| Alternative 2 - Non-Structural Rehabilitation (Lin | er)       |         | 50          |         |             |
| Condition Assessment                               |           | 9,000   |             |         | 9,000       |
| CIPP                                               | 949,944   |         | 50          | 949,944 | 52,035      |
| Total                                              | 949,944   | 9,000   |             |         | 61,035      |
| Alternative 3 - Structural Rehabilitation          |           |         | 70          |         |             |
| Condition Assessment                               |           | 3,000   |             |         | 3,000       |
| Replacement                                        | 933,420   |         | 70          | 933,420 | 48,257      |
| Chemical Addition                                  | 66,894    | 28,569  |             |         | 33,936      |
| Total                                              | 1,000,314 | 31,569  |             |         | 85,193      |

| From:    | Kevin Kennedy                                                               |
|----------|-----------------------------------------------------------------------------|
| То:      | Chantelle Garvin; Kevin Kennedy; Beverly Eklund                             |
| Subject: | FW: Rancho Murieta Chemical Addition - for recycled water for Kennedy Jenks |
| Date:    | Friday, March 31, 2017 9:30:00 AM                                           |

Ok here's the chemical costs:

Dosage = 96 gallons per day (conservative) x 365 days/yr = 35,040 gallons per year

Deliveries = 48,000 pounds (5500 gallons or about 8.7 lbs/gal – slightly higher than water, makes sense)

Cost = 35,040 gallons per year x 8.72 lbs/gallon x \$0.165/ wet lb = \$50,415/yr

From: Clare Walker [mailto:CWalker@northstarchemical.com]
Sent: Friday, March 31, 2017 8:54 AM
To: Kevin Kennedy; Robert Heller
Cc: Chantelle Garvin; Clare Walker
Subject: RE: Rancho Murieta Chemical Addition - for recycled water for Kennedy Jenks

Kevin:

Caustic soda has been increasing in price consistently since Nov 2016.

Current budget pricing I recommend for

<u>Caustic soda 50%</u> 48,000 lbs minimum per load Delivered to Rancho Murrietta \$660/dry ton delivered or \$.165/wet lb

Thank you,

Clare Walker

**Director of Sales** 

NORTHSTAR CHEMICAL Cell:: 925-787-5864 Email: <u>cwalker@northstarchemical.com</u> Website: <u>www.northstarchemical.com</u> To: Robert Heller <<u>RHeller@northstarchemical.com</u>>
Cc: Chantelle Garvin <<u>ChantelleGarvin@kennedyjenks.com</u>>; Clare Walker
<<u>CWalker@northstarchemical.com</u>>

Subject: Re: Rancho Murieta Chemical Addition - for recycled water for Kennedy Jenks

Thanks Rob. I appreciate you going to this s length to get the dosage.

Clare can you provide quote for bulk deliveries? Thank you

Sent from my iPhone

On Mar 30, 2017, at 6:59 PM, Robert Heller <<u>RHeller@northstarchemical.com</u>> wrote:

Hello Kevin, I made a lab batch of water to match your water analysis and then adjusted it with caustic soda from a pH of 6.4 to 8.0

For 600,000 gallons per day flow, it will require approximately 96 gallons of 50% caustic soda to raise the pH to 8.0.

We currently do not have any product available for sale to adjust the alkalinity. As we discussed, soda ash (sodium carbonate) may be a good choice.

I have Clare Walker copied on this message. She can get you a quote for bulk 50% caustic soda deliveries to Rancho Murieta if you require one.

Regards,

Robert Heller Industry Technical Manager Northstar Chemical Modesto, CA

530.263.5448 rheller@northstarchemical.com

From: Kevin Kennedy [mailto:KevinKennedy@kennedyjenks.com]
Sent: Thursday, March 30, 2017 11:04
To: Robert Heller <<u>RHeller@northstarchemical.com</u>>
Cc: Chantelle Garvin <<u>ChantelleGarvin@kennedyjenks.com</u>>
Subject: RE: Rancho Murieta Chemical Addition - for recycled water for Kennedy Jenks

I left you a voicemail. I wanted to estimate chemical dosage based on changing the pH and alkalinity from 6.4 and 40 mg/L as CaCO3 (as indicated in the attached lab analysis) to around 7.8 - 8 and 200 mg/L as CaCO3.

This is for the Rancho Murieta Community Services District wastewater treatment plan so delivery would be to Rancho Murieta, CA in 5500 gallon bulk delivery.

Sorry I misquoted flow (was thinking of another plant). Average flow is projected to be about 0.6 mgd.

I would like to get chemical quote as soon as possible.

Thanks Kevin

Kevin A. Kennedy, P.E. | Principal, Senior Project Manager Kennedy/Jenks Consultants 10850 Gold Center Drive, Suite 350 | Rancho Cordova, CA 95670 P: 916.858.2700 | Cell: 530.363.8800 | Direct: 916.858.2740

<image001.png> <image002.png> <image003.png>

CONFIDENTIALITY NOTICE - This message is intended only for the use of the individual or entity to which it is addressed and may contain information that is privileged, confidential and exempt from disclosure under applicable law. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this communication is strictly prohibited, and we request that you destroy or permanently delete this message, and notify the sender.

From: Robert Heller [mailto:RHeller@northstarchemical.com]
Sent: Thursday, March 30, 2017 8:54 AM
To: Kevin Kennedy
Subject: FW: Rancho Murieta Chemical Addition - for recycled water for Kennedy Jenks

From: Clare Walker
Sent: Wednesday, March 29, 2017 11:53
To: Robert Heller <<u>RHeller@northstarchemical.com</u>>
Cc: Clare Walker <<u>CWalker@northstarchemical.com</u>>
Subject: FW: Rancho Murieta Chemical Addition - for recycled water for Kennedy Jenks

Rob:

Can you get with this Kevin and Kennedy Jenks on amount of Caustic needed to adjust PH and alkalinity?

He was asking about mag too, but told him we do not sell Mag hydroxide.

They are looking at a Bulk system up there.

Not sure how much value there is for us in doing this kind of thing? Thoughts?

Hello Kevin, Clare Walker forwarded the attached water analysis to me, but there was no other information in your message below.

Please advise if I may be of assistance.

Regards,

Robert Heller Industry Technical Manager Northstar Chemical Modesto, CA

530.263.5448 rheller@northstarchemical.com

From: Kevin Kennedy Sent: Wednesday, March 29, 2017 10:29 AM To: Kevin Kennedy; Chantelle Garvin Subject:



# **Rancho Murieta** Community Services District